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Preliminaries: Part 1 

• Disclosures 
– The views expressed in this tutorial are those of the 

people delivering the tutorial.  
– We are not speaking for our employers. 
– We are not speaking for the OpenMP ARB 

• We take these tutorials VERY seriously: 
– Help us improve … tell us how you would make this 

tutorial better. 
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Preliminaries: Part 2 

• Our plan for the day .. Active learning! 
– We will mix short lectures with short exercises. 
– You will use your laptop to connect to a multiprocessor  

server. 
• Please follow these simple rules 
– Do the exercises that we assign and then change things  

around and experiment. 
– Embrace active learning! 

– Don’t cheat:  Do Not look at the solutions before you  
complete an exercise … even if you get really frustrated. 
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Cori - Cray XC40 

•  We will use the Cori system for hands on exercises today 
•  9,688 Intel Knights Landing compute nodes 
– 68 cores per node, 4 hardware threads per core 
– Larger vector units (512 bits) with more complex instructions 
– 96 GB DRAM, 16 GB on-package MCDRAM  

•  2,388 Intel Xeon Haswell compute nodes: 32 cores/node  
•  Cori KNL nodes are integrated with Haswell nodes on Aries 

network as one system 
•  Choices of Intel, Cray, and GNU compilers  
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Compile and run on Cori 
•  Exercises are at 
–  % cd $SCRATCH       # or another local directory 
–  % cp -r /project/projectdirs/training//OpenMP_May2018 . 
–  % cd OpenMP_May2008/C   (or …/Fortran) 
–  % make 

•  The default compiler is Intel. Use compiler wrappers (ftn, cc, and CC) 
and the OpenMP compiler flag to build, such as: 
–  % cc -qopenmp mycode.c 

•  To use another compiler, such as gcc: 
–  % module swap PrgEnv-intel PrgEnv-gnu 
–  % cc -fopenmp mycode.c 

•  To run on a compute node with an interactive batch session: 
–  Haswell node: % salloc -N 1 -C haswell -q interactive -t 1:00:00 
–  KNL node: % salloc -N 1 -C knl -q interactive -t 1:00:00 
–  Pure OpenMP code: % ./a.out 
–  Hybrid MPI/OpenMP code: % srun -n .. -c … --cpu_bind=cores ./a.out  
–  You will need to set OMP_NUM_THREADS and other OpenMP environment variables 

when necessary 
–  We will also talk about -n, -c settings later in the Affinity section 

  
    

 

5 



Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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OpenMP* overview: 

omp_set_lock(lck) 

#pragma omp parallel for private(A, B) 

#pragma omp critical 

C$OMP parallel do shared(a, b, c) 

C$OMP PARALLEL  REDUCTION (+: A, B) 

call OMP_INIT_LOCK (ilok) 

call omp_test_lock(jlok)  

setenv OMP_SCHEDULE “dynamic” 

CALL OMP_SET_NUM_THREADS(10) 

C$OMP DO lastprivate(XX) 

C$OMP ORDERED 

C$OMP  SINGLE PRIVATE(X) 

C$OMP SECTIONS  

C$OMP MASTER C$OMP ATOMIC 

C$OMP FLUSH 

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C) 

C$OMP THREADPRIVATE(/ABC/) 

C$OMP PARALLEL COPYIN(/blk/) 

Nthrds = OMP_GET_NUM_PROCS() 

!$OMP  BARRIER 

OpenMP:  An API for Writing Multithreaded 
Applications 
 

§ A set of compiler directives and library routines  for 
parallel application programmers 

§ Greatly simplifies writing multi-threaded (MT) programs 
in Fortran, C and C++ 

§ Standardizes established SMP practice + vectorization and 
heterogeneous device programming 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 7 



OpenMP programming model:  

Fork-Join Parallelism:  
u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program. 

Parallel Regions 
Master 
Thread 
in red 

A Nested 
Parallel 
region 

Sequential Parts 8 



Thread creation: Parallel regions 

•  You create threads in OpenMP* with the parallel construct. 
•  For example, To create a 4 thread Parallel region: 

double A[1000]; 
omp_set_num_threads(4); 
#pragma omp parallel 
{ 

 int ID = omp_get_thread_num(); 
     pooh(ID,A); 
} 

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block 

Runtime function to 
request a certain 
number of threads 

Runtime function 
returning a thread ID 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 9 



The worksharing-loop constructs 

•  The worksharing-loop construct splits up loop iterations 
among the threads in a team 

#pragma omp parallel 

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } 

} 

Worksharing-Loop 
construct name: 

• C/C++: for 

• Fortran: do 

The loop control index I is made 
“private” to each thread  by default.   

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop 
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Reduction 
•  OpenMP reduction clause:    

reduction (op : list) 

•  Inside a parallel or a work-sharing construct: 
– A local copy of each list variable is made and initialized depending 

on the “op” (e.g. 0 for “+”). 
– Updates occur on the local copy.  
– Local copies are reduced into a single value and combined with 

the original global value. 

•  The variables in “list” must be shared in the enclosing 
parallel region.   

 double  ave=0.0, A[MAX];    int i; 
#pragma omp parallel for reduction (+:ave) 
  for (i=0;i< MAX; i++) { 
         ave + = A[i]; 
  }  
  ave = ave/MAX;  

11 



Do you understand Reduction? 

•  What does the following code print? 

int j = 2; 
float sum = 1; 
float Avec[100]; 
 
// Initialize Avec to a set of random values 
Initialize(Avec, 100); 
 
#pragma omp parallel for reduction(+:sum)   
For (j=0; j<100; j++) 
     sum *= Avec[j]; 
 
printf(“ sum = %f \n”,(float)sum); 
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Exercise: Pi with loops and a reduction 

•  Start with  the serial pi program (pi.c) and parallelize it with a 
worksharing-loop construct 

•  Your goal is to minimize the number of changes made to the 
serial program. 

#pragma omp parallel 
#pragma omp for 
#pragma omp parallel for 
#pragma omp for reduction(op:list) 
#pragma omp critical 
int omp_get_num_threads();    
int omp_get_thread_num(); 
double omp_get_wtime(); 

Remember: OpenMP makes the loop control index in a loop workshare construct private 
for you … you don’t need to do this yourself 13 



Numerical integration: the pi program 

∫ 	4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 X 0.0 
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Serial PI program 

static long num_steps = 100000; 
double step; 
int main () 
{    int i;    double x, pi, sum = 0.0; 
 

   step = 1.0/(double) num_steps; 
 

   for (i=0; i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 
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Exercise: for more experienced OpenMP programmers 

•  Consider the program linked.c 
– Traverses a linked list computing a sequence of Fibonacci numbers at 

each node. 

•  Parallelize this program using anything you choose in 
OpenMP other than tasks. 

p = listhead ; 
while (p) {  
  process(p); 
  p=next(p) ; 
}  
    

Assume that items can 
be processed 
independently 
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Example: Pi with a loop and a reduction 
#include <omp.h> 
static long num_steps = 100000;         double step; 
void main () 
{    int i;    double x, pi, sum = 0.0;  
      step = 1.0/(double) num_steps; 
      #pragma omp parallel  
      { 
           double x; 
          #pragma omp for reduction(+:sum) 

     for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
     } 

       } 
   pi = step * sum; 

} 

Create a scalar local to each thread to hold 
value of x at the center of each interval 

Create a team of threads … 
without a parallel construct, you’ll 
never have more than one thread 

Break up loop iterations 
and assign them to 
threads … setting up a 
reduction into sum.  Note 
… the loop index is local to 
a thread by default. 
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Linked lists without tasks 
•  See the file Linked_omp25.c 

 while (p != NULL) { 
  p = p->next; 

       count++; 
 } 
 p = head; 
 for(i=0; i<count; i++) { 
       parr[i] = p; 
       p = p->next; 
    } 
 #pragma omp parallel  
 { 
      #pragma omp for schedule(static,1) 
      for(i=0; i<count; i++) 
         processwork(parr[i]); 
 } 

Count number of items in the linked list 

Copy pointer to each node into an array 

Process nodes in parallel with a for loop 

Default schedule Static,1 
One Thread 48 seconds 45 seconds 
Two Threads 39 seconds 28 seconds 

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2 18 



The growth of complexity in OpenMP 
•  OpenMP started out in 1997 as a simple interface for the application 

programmers more versed in their area of science than computer science. 

•  The complexity has grown considerably over the years! 
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The complexity of the full spec is overwhelming, so we focus on the 16 constructs most OpenMP 
programmers restrict themselves to … the so called “OpenMP Common Core” 
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The growth of complexity in OpenMP 
•  OpenMP started out in 1997 as a simple interface for the application 

programmers more versed in their area of science than computer science. 

•  The complexity has grown considerably over the years! 
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The complexity of the full spec is overwhelming, so we focus on the 19 constructs most OpenMP 
programmers restrict themselves to … the so called “OpenMP Common Core” 

Tasks added to OpenMP ... 
supports irregular parallelism 
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What are tasks? 

•  Tasks are independent units of work 
•  Tasks are composed of: 
–  code to execute 
– data to compute with 

•  Threads are assigned to perform the 
work of each task. 
– The thread that encounters the task construct 

may execute the task immediately. 
– The threads may defer execution until later Serial Parallel 
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Adding tasks to OpenMP required major changes 
to the specification 

Fork-Join Parallelism:  
u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program. 

Parallel Regions 
Master 
Thread 
in red 

Sequential Parts 
22 



Adding tasks to OpenMP required major changes 
to the specification 

Fork-Join Parallelism:  
u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program. 

Master 
Thread 
in red 

Let’s focus on just one fork/join  
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Low Level details of OpenMP 
1.  Program begins.  Launches 

Initial thread. 

4.  Initial thread encounters 
the parallel construct. 

2.  Implicit parallel region 
surrounds entire program 

3.  Initial task begins execution 

5.  Initial task creates a team 
of threads 

6.  Initial task is suspended 

7.  Each thread in the team 
runs the implicit task 
defined by the parallel 
region 

8.  Threads wait at barrier 

9.  Barrier satisfied 

10.  Implicit tasks terminate 

11.  Initial task continues 
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Why all this complexity around tasks? 
Remember: a language specification is written for people who implement the language … 
they have ZERO tolerance for ANY ambiguity. 

By defining a thread as 
an execution entity that 
runs tasks, we can define 
semantics in terms of 
tasks and consistently 
apply them everywhere.  

While all these initial threads, implicit tasks, and such are confusing to the programmer, 
they actually make life easier for people who implement OpenMP.  
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OpenMP pragma, function, or clause Concepts 

#pragma omp parallel Parallel region, teams of threads,  structured block, interleaved execution 
across threads 

int omp_get_thread_num() 
int omp_get_num_threads() 

Create threads with a parallel region and split up the work using the 
number of threads and thread ID 

double omp_get_wtime() Speedup and Amdahl's law. 
False Sharing and other performance issues 

setenv OMP_NUM_THREADS  N 
 

Internal control variables. Setting the default number of threads with an 
environment variable 

#pragma omp barrier 
#pragma omp critical 

Synchronization and race conditions.    Revisit interleaved execution.    

#pragma omp for 
#pragma omp parallel for 

Worksharing, parallel loops, loop carried dependencies 

reduction(op:list) Reductions of values across a team of threads 

schedule(dynamic [,chunk]) 
schedule (static [,chunk]) 

Loop schedules, loop overheads and load balance 
 

private(list), firstprivate(list), shared(list) Data environment 

nowait Disabling implied barriers on workshare constructs, the high cost of 
barriers. The flush concept (but not the concept) 

#pragma omp single Workshare with a single thread 

#pragma omp task 
#pragma omp taskwait 

Tasks including the data environment for tasks. 

The OpenMP Common Core: Most OpenMP programs only use these 19 items 

26 



Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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What are tasks? 

•  Task construct: a structured block of 
code + a data environment 

•  Inside a parallel region, a thread 
encountering a task construct will 
package up the code block and its data 
for execution 

•  The task is executed immediately, or 
deferred for later execution. 

•  Tasks can be nested: i.e. a task may 
itself generate tasks. Serial Parallel 

A common Pattern is to have one thread create the tasks while the other 
threads wait at a barrier and execute the tasks 

28 



Single worksharing Construct 

•  The single construct denotes a block of code that is 
executed by only one thread (not necessarily the master 
thread). 

•  A barrier is implied at the end of the single block (can 
remove the barrier with a nowait clause). 

#pragma omp parallel   
{   

 do_many_things(); 
#pragma omp single 

 {     exchange_boundaries();   } 
 do_many_other_things(); 

}  
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Data copying: Copyprivate 

#include <omp.h> 
void input_parameters (int, int); // fetch values of input parameters  
void do_work(int, int);  
 
void main() 
{ 
   int Nsize, choice; 
 
   #pragma omp parallel private (Nsize, choice) 
   { 
        #pragma omp single copyprivate (Nsize, choice) 
               input_parameters (*Nsize, *choice); 
 
        do_work(Nsize, choice); 
   } 
}!

Used with a single region to broadcast values of privates from one member of a 
team to the rest of the team 
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Task Directive 

#pragma omp parallel 
{  
  #pragma omp single 
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
  #pragma omp task 
     billy();  
   }  
} 

One Thread 
packages tasks 

Create some threads 

Tasks executed by 
some thread in some 
order 

All tasks complete before this barrier is released 

#pragma omp task [clauses] 

                     structured-block     
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When/where are tasks complete? 

•  At thread barriers (explicit or implicit) 
– applies to all tasks generated in the current parallel region up to the 

barrier 

•  At taskwait directive 
–  i.e. Wait until all tasks defined in the current task have completed.   

 #pragma omp taskwait 
– Note: applies only to tasks generated in the current task, not to 

“descendants” . 
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Example 

#pragma omp parallel 
{  
  #pragma omp single  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
     #pragma taskwait 
  #pragma omp task 
     billy();  
   }  
} 

fred() and daisy() 
must complete before 
billy() starts 
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The task construct (OpenMP 4.5) 

if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 (May’08) 

OpenMP 3.1 (Jul’11) 

OpenMP 4.0 (Jul’13) 

OpenMP 4.5 (Nov’15) 

The evolution of the task construct 

Generates an 
explicit task 
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The task construct (OpenMP 4.5) 

if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 

OpenMP 3.1 

OpenMP 4.0 

OpenMP 4.5 

The evolution of the task construct 

Generates an 
explicit task 

Consider the data 
environment associated 
with a task 
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Data scoping with tasks 
•  Variables can be shared, private or firstprivate with respect to 

task 

–  If a variable is shared on a task construct, the references to it inside 
the construct are to the storage with that name at the point where the 
task was encountered 

–  If a variable is private on a task construct, the references to it inside 
the construct are to new uninitialized storage that is created when the 
task is executed 

–  If a variable is firstprivate on a construct, the references to it inside the 
construct are to new storage that is created and initialized with the 
value of the existing storage of that name when the task is 
encountered 
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Data scoping defaults 
•  The behavior you want for tasks is usually firstprivate, because the task 

may not be executed until later (and variables may have gone out of 
scope) 
–  Variables that are private when the task construct is encountered are firstprivate by 

default 
•  Variables that are shared in all constructs starting from the innermost 

enclosing parallel construct are shared by default 

#pragma omp parallel shared(A) private(B) 
{ 
   ... 
#pragma omp task 
   { 
       int C; 
       compute(A, B, C); 
   } 
} 

A is shared 
B is firstprivate 
C is private 
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Exercise: Linked List 
•  Start from your serial linked list program (linked.c) 

•  Parallelize it using tasks 

#pragma omp parallel 
#pragma omp taskwait 
#pragma omp parallel firstprivate(x) shared(y) 
#pragma omp task 
#pragma omp single 

p = listhead ; 
while (p) {  
  process(p); 
  p=next(p) ; 
}  

38 



Parallel linked list traversal 

#pragma omp parallel 
{  
  #pragma omp single 
   {  
    p = listhead ; 
    while (p) {  
       #pragma omp task firstprivate(p)        
             {          
               process (p); 
             } 
       p=next (p) ; 
     }  
   }  
} 

makes a copy of p  
when the task is 
packaged 

Only one thread 
packages tasks 
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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Divide and conquer 

•  Split the problem into smaller sub-problems; continue until 
the sub-problems can be solve directly 

n  3 Options: 
¨  Do work as you split 

into sub-problems 
¨  Do work only at the 

leaves 
¨  Do work as you 

recombine 
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Example: Fibonacci numbers 
A classic divide and conquer problem 

•  Fn = Fn-1 + Fn-2 

•  Inefficient O(n2) 
recursive 
implementation! 

int fib (int n) 
{ 
   int x,y; 
   if (n < 2) return n; 
 
   x = fib(n-1); 
   y = fib (n-2); 
 
   return (x+y); 
} 
 
Int main() 
{ 
   int NW = 5000; 
   fib(NW); 
} 

Direct Solve 

Split 

Merge 

42 



Parallel Fibonacci 

•  Binary tree of tasks 

•  Traversed using a recursive 
function 

•  A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait) 

•  x,y are local, and so by default 
they are  private to current task 

–  must be shared on child tasks so they 
don’t create their own firstprivate 
copies at this level!  

int fib (int n) 
{   int x,y; 
   if (n < 2) return n; 
 
#pragma omp task shared(x) 
   x = fib(n-1); 
#pragma omp task shared(y) 
   y = fib (n-2); 
#pragma omp taskwait 
   return (x+y); 
} 
 
Int main() 
{  int NW = 5000; 
   #pragma omp parallel 
   {  
       #pragma omp single 
             fib(NW); 
   } 
} 43 



Parallel Fibonacci again 
int fib ( int n ) 
{ 
int x,y; 
   if ( n < 2 ) return n; 
#pragma omp task shared(x) if(n>30) 
   x = fib(n-1); 
#pragma omp task shared(y) if(n>30) 
   y = fib(n-2); 
#pragma omp taskwait 
   return x+y 
} 
int main() 
{  int NN = 5000; 
   #pragma omp parallel 
   { 
       #pragma omp master 
          fib(NN); 
   } 
} 

Stop creating tasks at 
some level in the tree. 
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Exercise: Pi with tasks 

•  Start from the basic serial pi program, pi.c or pi.f 
– First create a serial divide-and-conquer/recursive solution.  
– Parallelize the recursive program using OpenMP tasks 
 
#pragma omp parallel 
#pragma omp task 
#pragma omp taskwait 
#pragma omp single 
double omp_get_wtime() 
int omp_get_thread_num(); 
int omp_get_num_threads(); 

Hints: 
•  Think carefully about what you want the 

direct solve case to be. 
•  Make life easy on yourself for the 

splitting and specialize to a Power-of-
two number of steps 
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Program: OpenMP tasks   
#include <omp.h> 
static long num_steps = 1024*1024; 
#define MIN_BLK  1024 
double pi_comp(int Nstart,int Nfinish,double step) 
{   int i,iblk; 
   double x, sum = 0.0,sum1, sum2; 
   if (Nfinish-Nstart < MIN_BLK){ 
      for (i=Nstart;i< Nfinish; i++){ 
         x = (i+0.5)*step; 
         sum = sum + 4.0/(1.0+x*x);  
      } 
   } 
   else{ 
      iblk = Nfinish-Nstart; 
      #pragma omp task shared(sum1) 
           sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step); 
      #pragma omp task shared(sum2) 
            sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step); 
      #pragma omp taskwait 
         sum = sum1 + sum2; 
   }return sum; 
} 

 int main () 
 { 
   int i; 
   double step, pi, sum; 
    step = 1.0/(double) num_steps; 
    #pragma omp parallel   
    { 
        #pragma omp single 
            sum =    

 pi_comp(0,num_steps,step); 
     } 
      pi = step * sum; 
 }    
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Results*: pi with tasks 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   
threads 1st SPMD SPMD 

critical 
PI Loop Pi tasks 

1 1.86 1.87 1.91 1.87 

2 1.03 1.00 1.02 1.00 

3 1.08 0.68 0.80 0.76 

4 0.97 0.53 0.68 0.52 

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core 
(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 
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Using tasks 

•  Don’t use tasks for things already well supported by 
OpenMP 
– e.g. standard do/for loops 
– the overhead of using tasks is greater 

•  Don’t expect miracles from the runtime 
– best results usually obtained where the user controls the 

number and granularity of tasks 
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
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•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
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Task definitions 
•  Task: a specific instance of executable code and its data 

environment. 
•  Task region: all the code encountered during the execution of 

a task. 
•  When a task construct is encountered by a thread, the 

generated task may be: 
– Deferred: executed by some thread independently of generating task. 
– Undeferred: completes execution before the generating task continues.  
–  Included: Undeferred and executed by the thread that encounters the 

task construct. 

•  Tasks once started may suspend, wait, and restart. 
– Tied tasks: if a thread is suspended, the same thread will restart the 

thread at a later time. 
– Untied tasks: if a task is suspended, any thread in the binding team may 

restart the thread at a later time.   
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The task construct (OpenMP 4.5) 

if([ task :]scalar-expression) 
untied 
default(shared | none)  
private(list)  
firstprivate(list)  
shared(list)  
final(scalar-expression)  
mergeable  
depend(dependence-type : list)  
priority(priority-value)  

#pragma omp task [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

OpenMP 3.0 

OpenMP 3.1 

OpenMP 4.0 

OpenMP 4.5 

The evolution of the task construct 

Generates an 
explicit task 
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Task dependencies 

!$omp task depend(type:list)  
where type is in, out or inout and list is a list of variables. 
–  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++ 
–  in: the generated task will be a dependent task of all previously 

generated sibling tasks that reference at least one of the list items in 
an out or inout clause 
–  out or inout: the generated task will be a dependent task of all 

previously generated sibling tasks that reference at least one of the 
list items in an in, out or inout clause 
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Task dependencies example 

#pragma omp task depend (out:a) 
   { ... } //writes a 
#pragma omp task depend (out:b) 
   { ... } //writes b 
#pragma omp task depend (in:a,b) 
   { ... } //reads a and b  
 
•  The first two tasks can execute in parallel 
•  The third task cannot start until the first two are complete 
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The task construct: the newer/rarely used clauses 

final(scalar-expression) 

OpenMP 3.0           OpenMP 3.1              OpenMP 4.0               OpenMP 4.5 

The created task, if suspended, can be executed by 
a different thread 

If the scalar-expression is true, generated tasks are 
undeferred and execute immediately by the 
encountering thread. 

The task is mergable if it is undeferred and 
included (i.e. uses the parent tasks data 
environment). 

Gives a hint to the compiler to schedule tasks with 
a larger priority value (>0) before tasks with a 
lower value. 

untied 

mergeable  

priority(priority-value)  
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Waiting for tasks to complete 
#pragma omp taskwait 

Causes current task region to suspend and wait for completion of all the child 
tasks created before the taskwait to complete 
•  A standalone directive 
•  Defines a task scheduling point 

#pragma omp taskgroup 
 structured-block  

A thread encounters the taskgroup construct.  It executes the code in the 
structured block. 
That thread suspends and waits at the end of the taskgroup region until all child 
tasks and any of their descendant tasks are complete. 

OpenMP 3.0 

OpenMP 4.0 
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 #pragma omp single 
 { 
   for (i=0; i<ONEZILLION; i++) 
     #pragma omp task 
       process(item[i]); 
 } 

•  Consider the following example ... Where the program may generate so 
many tasks that the internal data structures managing tasks overflow. 

Task switching 

•  Solution … Task switching;  Threads can switch to other tasks at certain 
points called task scheduling points. 

•  With Task switching, a thread can  
–  Execute an already generated task … to “drain the task pool” 
–  Execute the encountered task immediately (instead of deferring task 

execution for later) 
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Explicit task scheduling 
#pragma omp taskyield 

Tells the OpenMP runtime that the current task can be suspended in favor of 
execution of a different task 
•  A standalone directive 
•  Defines an explicit task scheduling point 

OpenMP 3.1 

#include <omp.h> 
void something_useful ( void ); 
void mutual_excl_op( void ); 
void foo ( omp_lock_t * lock, int n ) 
{   for (int  i = 0; i < n; i++ )       
    #pragma omp task       
    {    something_useful();     
         while ( !omp_test_lock(lock) ) {        
                  #pragma omp taskyield     
          }     
          mutual_excl_op();     
          omp_unset_lock(lock); 
     } 
} 

Grab a lock if you can, 
return if you can’t 

Tell the runtime it can  
suspend current task and 

schedule another 

Release the lock that protected 
mutual_excl_op() 

 A function that 
only one task at 

a time can 
execute (mutual 

exclusion) 
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Task scheduling Points 
•  Task switching can only occur at Task Scheduling points. 
•  Task scheduling points happen …  
– After generation of an explicit task 
– After completion of a task region 
–  In a taskyield region 
–  In a taskwait region 
– At the end of a taskgropup or barrier 
–  In and around regions associated with target constructs (not 

discussed here). 

•  At a task scheduling point, any of the following can happen 
for any tasks bound to the current team 
– Begin execution of a tied or untied task   
– Resume any suspended task  (tied or untied) 
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Task Scheduling Details 

•  An included task is executed immediately after generation of 
the task 

•  Scheduling of new tied tasks is constrained by the set of task 
regions that are currently tied to the thread, and that are not 
suspended in a barrier region.  
–  If this set is empty, any new tied task may be scheduled.  
– Otherwise, a new tied task may be scheduled only if it is a descendent 

task of every task in the set. 

•  A dependent task shall not be scheduled until its task 
dependences are fulfilled. 

•  When an explicit task is generated by a construct containing an 
if clause for which the expression evaluated to false, and the 
previous constraints are already met, the task is executed 
immediately after generation of the task. 
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Task Execution around task scheduling points 

•  Think of a task as a set of “task regions” between task 
scheduling points 

•  Each “task region” executes uninterrupted from start to end in 
the order they are encountered.   

•  A correct program must behave correctly and consistently with 
all conceivable scheduling sequences that are compatible with 
the rules above. 
–  If multiple “task regions” between scheduling points modify values in 

threadprivate storage, a data race is produced and the state of 
threadprivate storage is not defined. 
– Lock acquire and release in different task regions may break program-

order lock protocols and deadlock. 
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The taskloop construct (OpenMP 4.5) 

if([ taskloop :]scalar-expr) 

 shared(list) 

private(list)  

firstprivate(list)  

lastprivate(list)  

default(shared | none)  

grainsize(grain-size)  

num_tasks(num-tasks)  

collapse(n)  

final(scalar-expr)  

priority(priority-value)  

untied 

mergeable 

nogroup 

#pragma omp taskloop [clause[[,]clause]...] 
 structured-block  

where clause is one of the following:  

•  The structured block contains loops in 
the standard form 

•  Loop iterations are turned into tasks 
that execute within a taskgroup (unless 
the nogroup clause is present) 

•  Grainsize specifies the number of 
iterations per task 

•  Num_tasks stipulates the number of 
tasks to create (unless there are too 
few loop iterations) 
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HMMER3: task and taskgroup to Overlap I/O and Compute 

Courtesy	of	William	Arndt,	
NERSC 

#pragma omp parallel { 
#pragma omp single { 

#pragma omp task { load_seq_buffer(); } 
#pragma omp task { load_hmm_buffer(); } 
#pragma omp taskwait 
while( more HMMs ) { 

#pragma omp task { write_output();  
                   load_hmm_buffer(); } 
while( more sequences ) { 

#pragma omp taskgroup { 
#pragma omp task 
{ load_seq_buffer(); } 
for ( each hmm in hmm_buffer ) 

#pragma omp task 
{ task_kernel(); } 

swap_I/
O_and_working_seq_buffers(); 

} 
} 
#pragma omp taskwait 
swap_I/O_and_working_hmm_buffers(); 

} 
} 

} 
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HMMER3: use OpenMP task directives 
•  Replace pthread implementation limited by performance of master thread 

–  OpenMP tasks facilitate overlap of I/O and Compute 
–  Forking of child tasks and task groups allow simple work stealing implementation 

•  Thread scaling result on 1 Edison node (24 cores of Intel Xeon Ivy Bridge) 
 
 

•  pthread HMMER3 Red 
•  OpenMP HMMER3 Green 
 
•  Dashed lines show 

theoretical peak (two lines 
because serial performance 
is also improved) 

 

Courtesy	of	Willaim	Arndt,	
NERSC 
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Data sharing: Threadprivate 

•  Makes global data private to a thread 
– Fortran: COMMON  blocks 
– C: File scope and static variables, static class members 

•  Different from making them PRIVATE 
– with PRIVATE global variables are masked.  
– THREADPRIVATE preserves global scope within each thread 

•  Threadprivate variables can be initialized using COPYIN 
or at time of definition (using language-defined 
initialization capabilities) 
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A threadprivate example (C) 

int counter = 0; 
#pragma omp threadprivate(counter) 
 
int increment_counter() 
{ 
    counter++; 
    return (counter); 
}!

Use threadprivate to create a counter for each 
thread. 

66 



Data copying: Copyin 

      parameter (N=1000) 
      common/buf/A(N) 
!$OMP THREADPRIVATE(/buf/) 
 
!$ Initialize the A array 
      call init_data(N,A) 
 
!$OMP PARALLEL COPYIN(A) 
 
 … Now each thread sees threadprivate array A initialized  
 … to the global value set in the subroutine init_data() 
 
!$OMP END PARALLEL 
 
end!

You initialize threadprivate data using a copyin 
clause.  
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Exercise: Monte Carlo calculations  
Using random numbers to solve tough problems 

•  Sample a problem domain to estimate areas, compute probabilities, 
find optimal values, etc. 

•  Example: Computing π with a digital dart board: 

l  Throw darts at the circle/square. 
l  Chance of falling in circle is 

proportional to ratio of areas: 
Ac = r2 * π 
As = (2*r) * (2*r)  = 4 * r2 

P = Ac/As =  π /4 
l  Compute π by randomly 

choosing points; π is four times 
the fraction that falls in the circle 

2 * r 

N= 10       π = 2.8 

N=100       π = 3.16 

N= 1000    π = 3.148 
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Exercise: Monte Carlo pi (cont) 

•  We provide three files for this exercise 
– pi_mc.c: the Monte Carlo method pi program 
–  random.c: a simple random number generator 
–  random.h: include file for random number generator 

•  Create a parallel version of this program without changing 
the interfaces to functions in random.c 
– This is an exercise in modular software … why should a user of your 

random number generator have to know any details of the generator 
or make any changes to how the generator is called as they move to 
a multithreaded program? 
– The random number generator must be thread-safe.  

•  Extra Credit: 
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers). 

69 



Parallel Programmers love Monte Carlo 
algorithms 

#include “omp.h” 
static long num_trials = 10000; 
int main () 
{ 
   long i;      long Ncirc = 0;       double pi, x, y; 
   double r = 1.0;   // radius of circle. Side of squrare is 2*r  
   seed(0,-r, r);  // The circle and square are centered at the origin 
   #pragma omp parallel for private (x, y) reduction (+:Ncirc) 
   for(i=0;i<num_trials; i++) 
   { 
      x = random();         y = random(); 
      if ( x*x + y*y) <= r*r)   Ncirc++; 
    } 
 
    pi = 4.0 * ((double)Ncirc/(double)num_trials); 
    printf("\n %d trials, pi is %f \n",num_trials, pi); 
} 

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing. 

Add two lines and you have a 
parallel program. 
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Linear Congruential Generator (LCG) 
•  LCG: Easy to write, cheap to compute, portable, OK quality 

l  If you pick the multiplier and addend correctly, LCG has a period of 
PMOD. 

l  Picking good LCG parameters is complicated, so look it up 
(Numerical Recipes is a good source).  I used the following: 

u MULTIPLIER = 1366 
u ADDEND = 150889 
u PMOD = 714025 

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
random_last = random_next; 
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LCG code 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

Seed the pseudo random 
sequence by setting 
random_last 
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Running the PI_MC program with LCG generator 

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10  R
elative error 

Log10 number of samples 

Run the same 
program the 
same way and 
get different 
answers!   

That is not 
acceptable! 

Issue: my LCG 
generator is not 
threadsafe 

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP. 73 



LCG code: threadsafe version 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
#pragma omp threadprivate(random_last) 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

random_last carries state 
between random number 
computations, 

To make the generator 
threadsafe, make 
random_last threadprivate 
so each thread has its own 
copy. 
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The loop worksharing constructs 

•  The loop worksharing construct splits up loop iterations 
among the threads in a team 

#pragma omp parallel 

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } 

} 

Loop construct name: 

• C/C++: for 

• Fortran: do 

The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause 
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Loop worksharing constructs: 
The schedule clause 

•  The schedule clause affects how loop iterations are mapped onto threads 
–  schedule(static [,chunk]) 

–  Deal-out blocks of iterations of size “chunk” to each thread. 
–  schedule(dynamic[,chunk]) 

–  Each thread grabs “chunk” iterations off a queue until all iterations have 
been handled. 

–  schedule(guided[,chunk]) 
–  Threads dynamically grab blocks of iterations. The size of the block starts 

large and shrinks down to size “chunk” as the calculation proceeds. 
–  schedule(runtime) 

–  Schedule  and chunk size taken from the OMP_SCHEDULE environment 
variable (or the runtime library). 

–  schedule(auto) 
–  Schedule is left up to the runtime to choose (does not have to be any of the 

above). 

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.   
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Schedule Clause When To Use 

STATIC Pre-determined and 
predictable by the 
programmer 

DYNAMIC Unpredictable, highly 
variable work per 
iteration 

GUIDED 
 

Special case of dynamic 
to reduce scheduling 
overhead 

AUTO When the runtime can 
“learn” from previous 
executions of the same 
loop 

loop work-sharing constructs: 
The schedule clause 

Least work at 
runtime : 
scheduling done 
at compile-time 

Most work at 
runtime : 
complex 
scheduling logic 
used at run-time 

78 



#pragma omp parallel for collapse(2) 
for (int i=0; i<N; i++) { 
  for (int j=0; j<M; j++) { 
         ..... 
  }  
}  

79 

Nested loops 

•  Will form a single loop of length NxM and then parallelize 
that. 

•  Useful if N is O(no. of threads) so parallelizing the outer loop 
makes balancing the load difficult. 

Number of loops 
to be 
parallelized, 
counting from 
the outside 

l  For perfectly nested rectangular loops we can parallelize 
multiple loops in the nest with the collapse clause:  



Sections worksharing Construct 
•  The Sections worksharing construct gives a different 

structured block to each thread.   

#pragma omp parallel 
{ 

   #pragma omp sections 
   { 
   #pragma omp section 
            X_calculation(); 
   #pragma omp section 

 y_calculation(); 
   #pragma omp section 

 z_calculation(); 
   } 

} 

By default, there is a barrier at the end of the “omp sections”.  
Use the “nowait” clause to turn off the barrier. 80 



Array sections with reduce 
#include <stdio.h>  
#define N 100  
void init(int n, float (*b)[N]);  
int main(){  
int i,j; float a[N], b[N][N]; init(N,b);  
for(i=0; i<N; i++)  a[i]=0.0e0;  
 
#pragma omp parallel for reduction(+:a[0:N]) private(j)  
for(i=0; i<N; i++){  
   for(j=0; j<N; j++){  
          a[j] += b[i][j];  
   }  
}  
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);  
return 0;  

Works the same as any 
other reduce … a private 
array is formed for each 
thread, element wise 
combination across threads 
and then with original array 
at the end 
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Parallel loop with ordered region 
•  An ordered clause on a loop worksharing construct 
–  indicates that the loop contains an ordered region 

•  The ordered construct defines an ordered region 
–  The Statements in ordered region execute in iteration order 

#pragma	omp	for	ordered	
				for	(i=0;	i<N;	i++)	{	
						float	res	=	work(i);	
						#pragma	omp	ordered	
						{	
								printf("result	for	%d	was	%f\n",	i,	res);	
								fflush(stdout);	
						}	
				}				

83 



Parallelizing nested loops 

•  Pattern of dependencies between elements of x prevent 
straightforward parallelization 

•  is there a way to manage the synchronization so we can 
parallelize this loop? 

#pragma	omp	parallel	for	collapse(2)	
for	(r=1;	r<N;	r++)	{	
			for	(c=1;	c<N;	c++)	{	
		
				x[r][c]	+=	fn(x[r-1][c],	x[r][c-1]);	
	
		}				
}				

•  Will these nested parallel loops execute correctly? 

x[r][c] 

x[r-1][c] 

x[r][c-1] 

An array section  of x 
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Ordered stand-alone directive 
•  Specifies cross-iteration dependencies in a doacross loop nest 
… i.e. loop level parallelism over nested loops with a regular 
pattern of synchronization to manage dependencies. 

#pragma omp ordered depend(sink : vec) 
#pragma omp ordered depend(source)  

•  Depend clauses specify the order the threads execute 
ordered regions.  
– The sink dependence-type  
–  specifies a cross-iteration dependence, where the iteration vector vec 

indicates the iteration that satisfies the dependence.  
– The source dependence-type  
–  specifies the cross-iteration dependences that arise from the current 

iteration.  

vec is a comma 
separated list of 
decencies … one 
per loop involved 

in the 
dependencies  
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Parallelizing DOACROSS loops 

#pragma	omp	for	ordered(2)	collapse(2)	
				for	(r=1;	r<N;	r++)	{	
								for	(c=1;	c<N;	c++)	{	
												//	other	parallel	work	...	
												#pragma	omp	ordered	depend(sink:r-1,c)	\	
												 																		depend(sink:r,c-1)	
																x[r][c]	+=	fn(x[r-1][c],	x[r][c-1]);	
												#pragma	omp	ordered	depend(source)	
								}				
				}				 x[r][c] is complete and 

released for use by other 
threads 

Threads wait here until x[r-1][c] 
and x[r][c-1] have been released 

2 loops contribute to the pattern of 
dependencies … so the dependency 
relations for each depend(sink) is of 

length 2 
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Synchronization 

•  High level synchronization: 
– critical 
– barrier 
– atomic 
– ordered 

•  Low level synchronization 
– flush 
– locks (both simple and nested) 

Synchronization is used to 
impose order constraints and 
to protect access to shared 
data 

Covered in the 
common core 
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Synchronization: atomic 

•  Atomic provides mutual exclusion but only applies to the update 
of a memory location (the update of X in the following example) 

#pragma omp parallel 

{  
         double tmp, B; 

        B =  DOIT(); 

          

 #pragma omp atomic  
 X += big_ugly(B); 

} 

#pragma omp parallel 

{  
        double B;  

        B =  DOIT(); 

          

 #pragma omp atomic  
 X +=  big_ugly(B); 

} 
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Synchronization: atomic 

•  Atomic provides mutual exclusion but only applies to the update 
of a memory location (the update of X in the following example) 

#pragma omp parallel 

{  
        double B, tmp; 

        B =  DOIT(); 

        tmp = big_ugly(B); 

 #pragma omp atomic  
 X +=  tmp; 

} 

Atomic only protects the 
read/update of X 

Additional forms of atomic were added in 3.1  (discussed later) 
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OpenMP memory model 

  

l  OpenMP supports a shared memory model 
l  All threads share an address space, where variable can be stored or 

retrieved:  

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2   cache3 cacheN 

l  Threads maintain their own temporary view of memory as well … the 
details of which are not defined in OpenMP but this temporary view 
typically resides in caches, registers, write-buffers, etc. 

a 

a 

. . . 
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Flush operation 
•  Defines a sequence point at which a thread enforces a 

consistent view of memory. 

•  For variables visible to other threads and associated with the 
flush operation (the flush-set)  
– The compiler can’t move loads/stores of the flush-set around a flush: 
–  All previous read/writes of the flush-set  by this thread have completed  
– No subsequent read/writes of the flush-set by this thread have occurred 

– Variables in the flush set are moved from temporary storage to shared 
memory. 
– Reads of variables in the flush set following the flush are loaded from 

shared memory. 

IMPORTANT POINT: The flush makes the calling threads temporary view match the view in 
shared memory.  Flush by itself does not force synchronization. 
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Memory consistency: flush example 

l  Flush forces data to be updated in memory so other threads see the most 
recent value 

double A; 

A = compute(); 

#pragma omp flush(A) 

   // flush to memory to make sure other 
   //  threads can pick up the right value   

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs 

Flush without a list: flush set is all thread 
visible variables 
 
Flush with a list: flush set is the list of 
variables 
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Flush and synchronization 

•  A flush operation is implied by OpenMP synchronizations, e.g., 
– at entry/exit of parallel regions 
– at implicit and explicit barriers 
– at entry/exit of critical regions 
– whenever a lock is set or unset 
…. 
(but not at entry to worksharing regions or entry/exit of master regions)  
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Exercise: prod_cons.c 

 int main() 
 { 
   double *A, sum, runtime;     int flag = 0; 
 
   A = (double *) malloc(N*sizeof(double)); 
 
   runtime = omp_get_wtime(); 
 
   fill_rand(N, A);        // Producer: fill an array of data 
 
   sum = Sum_array(N, A);  // Consumer: sum the array 
    
   runtime = omp_get_wtime() - runtime; 
 
   printf(" In %lf secs, The sum is %lf \n",runtime,sum); 
 } 

•  Parallelize a producer/consumer program 
– One thread produces values that another thread consumes. 

– The key is to 
implement 
pairwise 
synchronization 
between threads 

– Often used with a 
stream of 
produced values 
to implement 
“pipeline 
parallelism” 

How would you modify prod_cons.c so we use two threads: one to fill the array 
(producer) and another con sum the array (consumer).  96 



Pairwise synchronization in OpenMP 

•  OpenMP lacks synchronization constructs that work between 
pairs of threads. 

•  When needed, you have to build it yourself. 
•  Pairwise synchronization 
– Use a shared flag variable 
– Reader spins waiting for the new flag value 
– Use flushes to force updates to and from memory 
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Exercise: Producer/consumer 
int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
  
           flag = 1; 
  
        } 
        #pragma omp section 
        { 
  
           while (flag == 0){ 
  
           } 
  
           sum = Sum_array(N, A); 
        } 
      } 
} 

Put the flushes in the right places to 
make this program race-free. 

Do you need any other 
synchronization constructs to make 
this work? 

Start from the serial version of proc_cons.c, parallelize the program and use flush to make 
data sharing between threads race free 

98 



Solution (try 1): Producer/consumer 
int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        { 
           #pragma omp flush (flag) 
           while (flag == 0){ 
                #pragma omp flush (flag) 
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

Use flag to Signal when the 
“produced” value is ready 

Flush forces refresh to memory;  
guarantees that the other thread 
sees the new value of A 

Notice you must put the flush inside the 
while loop to make sure the updated flag 
variable is seen 

Flush needed on both “reader” and “writer” 
sides of the communication 

This program works with the x86 memory model (loads and stores use relaxed 
atomics), but it technically has a race … on the store and later load of flag  99 



The OpenMP 3.1 atomics (1 of 2) 
•  Atomic was expanded to cover the full range of common scenarios 

where you need to protect a memory operation so it occurs atomically: 
 # pragma omp atomic [read | write | update | capture] 

•  Atomic can protect loads 
 # pragma omp atomic read 
  v = x;  

•  Atomic can protect stores 
 # pragma omp atomic write 
  x = expr;  

•  Atomic can protect updates to a storage location (this is the default 
behavior … i.e. when you don’t provide a clause) 

 # pragma omp atomic update 
  x++;  or ++x;  or x--;  or –x;  or  
  x binop= expr; or x = x binop expr; 

This is the 
original OpenMP 

atomic 
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The OpenMP 3.1 atomics (2 of 2) 
•  Atomic can protect the assignment of a value (its capture) AND an 

associated update operation: 
 # pragma omp atomic capture 
  statement or structured block 

•  Where the statement is one of the following forms: 
  v = x++;       v = ++x;        v = x--;       v =  –x;       v = x binop expr; 

•  Where the structured block is one of the following forms: 
   

{v = x;  x binop = expr;} {x  binop = expr;     v = x;} 
{v=x;    x=x binop expr;} {X = x binop expr;   v = x;} 
{v = x;   x++;} {v=x;     ++x:} 
{++x;     v=x:} {x++;      v = x;} 
{v = x;    x--;} {v= x;     --x;} 
{--x;        v = x;} {x--;        v = x;} 

The capture semantics in atomic were added to map onto common hardware 
supported atomic operations and to support modern lock free algorithms 
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Atomics and synchronization flags 
int main() 
{   double *A, sum, runtime;     
    int numthreads, flag = 0, flg_tmp; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        {  fill_rand(N, A); 
           #pragma omp flush 
           #pragma omp atomic write 
                    flag = 1; 
           #pragma omp flush (flag) 
        } 
        #pragma omp section 
        {  while (1){ 
               #pragma omp flush(flag)  
               #pragma omp atomic read 
                      flg_tmp= flag;  
                if (flg_tmp==1) break; 
            } 
            #pragma omp flush 
            sum = Sum_array(N, A); 
        } 
      } 
} 

This program is truly race 
free … the reads and writes 
of flag are protected so the 
two threads cannot conflict  

Still painful and error prone 
due to all of the flushes that 
are required  
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OpenMP 4.0 Atomic: Sequential consistency 

•  Sequential consistency: 
– The order of loads and stores in a race-free program appear in some 

interleaved order and all threads in the team see this same order. 

•  OpenMP 4.0 added an optional clause to atomics 
– #pragma omp atomic [read | write | update | capture] [seq_cst] 

•  In more pragmatic terms: 
–  If the seq_cst clause is included, OpenMP adds a flush without an 

argument list to the atomic operation so you don’t need to. 

•  In terms of the C++’11 memory model: 
– Use of the seq_cst clause makes atomics follow the sequentially 

consistent memory order. 
– Leaving off the seq_cst clause makes the atomics relaxed. 

4.0 

Advice to programmers: save yourself a world of hurt … let OpenMP take care of 
your flushes for you whenever possible … use seq_cst 
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Atomics and synchronization flags (4.0) 
int main() 
{   double *A, sum, runtime;     
    int numthreads, flag = 0, flg_tmp; 
    A = (double *)malloc(N*sizeof(double)); 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        {  fill_rand(N, A); 
            
           #pragma omp atomic write seq_cst 
                    flag = 1; 
            
        } 
        #pragma omp section 
        {  while (1){ 
                
               #pragma omp atomic read seq_cst 
                      flg_tmp= flag;  
                if (flg_tmp==1) break; 
            } 
             
            sum = Sum_array(N, A); 
        } 
      } 
} 

This program is truly race 
free … the reads and writes of 
flag are protected so the two 
threads cannot conflict – and 
you do not use any explicit 
flush constructs (OpenMP 
does them for you) 
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Synchronization: Lock routines 
•  Simple Lock routines: 
– A simple lock is available if it is unset. 

– omp_init_lock(), omp_set_lock(),  
omp_unset_lock(), omp_test_lock(), omp_destroy_lock() 

•  Nested Locks 
– A nested lock is available if it is unset or if it is set but owned by 

the thread executing the nested lock function 
– omp_init_nest_lock(), omp_set_nest_lock(), 

omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock() 

Note: a thread always accesses the most recent copy of the lock, 
so you don’t need to use a flush on the lock variable. 

A lock implies a 
memory fence (a 
“flush”) of all thread 
visible variables 

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on 
intended use (e.g. contended, unconteded, speculative,, unspeculative)  

105 



Synchronization: Simple locks 
•  Example: conflicts are rare, but to play it safe, we must assure mutual 

exclusion for updates to histogram elements. 

#pragma omp parallel for 
 for(i=0;i<NBUCKETS; i++){ 
       omp_init_lock(&hist_locks[i]);    hist[i] = 0; 
 } 
 #pragma omp parallel for 
 for(i=0;i<NVALS;i++){ 
     ival = (int)  sample(arr[i]); 
     omp_set_lock(&hist_locks[ival]);    
          hist[ival]++; 
     omp_unset_lock(&hist_locks[ival]); 
   } 
 
for(i=0;i<NBUCKETS; i++) 
  omp_destroy_lock(&hist_locks[i]);  

Free-up storage when done. 

One lock per element of hist 

Enforce mutual 
exclusion on update 
to hist array 
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Exercise: Histograms 

•  Consider the file hist.c. 
– The program generates a sequence of pseudo random numbers, 

does some work for each one (compute a Fibonacci number), then 
puts the pseudorandom number into a bin in a histogram. 

•  Parallelize the program and evaluate the performance. 
#pragma omp parallel for 
#pragma omp critical 
# pragma omp atomic [read | write | update | capture] 
omp_lock_t lck; 
omp_init_lock(&lck) 
omp_set_lock(&lck) 
omp_unset_lock(&lck) 
omp_test_lock(&lck) 
omp_destroy_lock(&lck) 
 
 

These are thread safe and 
can be called inside a 
parallel region 
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Synchronization: Simple locks 
•  Example: conflicts are rare, but to play it safe, we must assure mutual 

exclusion for updates to histogram elements. 

omp_lock_t hist_locks[NBUCKETS]; 
#pragma omp parallel for 
 for(i=0;i<NBUCKETS; i++){ 
       omp_init_lock(&hist_locks[i]);    hist[i] = 0; 
 } 
 #pragma omp parallel for 
 for(i=0;i<NVALS;i++){ 
     ival = (int)  sample(arr[i]); 
     omp_set_lock(&hist_locks[ival]);    
          hist[ival]++; 
     omp_unset_lock(&hist_locks[ival]); 
   } 
 
for(i=0;i<NBUCKETS; i++) 
  omp_destroy_lock(&hist_locks[i]);  Free-up storage when done. 

One lock per element of hist 

Enforce mutual 
exclusion on update 
to hist array 
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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Common architectures 
•  Shared Memory Architecture 
– Multiple CPUs share global memory 
– Uniform Memory Access (UMA) or SMP (Symmetric Multiprocessor) 
–  Equal cost to any location in memory  

– Non-Uniform Memory Access (NUMA)  
– Unequal cost across memory locations 

– Typical Shared Memory Programming Model: OpenMP, Pthreads, … 

•  Distributed Memory Architecture 
– Each CPU has own memory 
– Typical Message Passing Programming Model: MPI, … 

•  Hybrid Architecture 
– Shared memory node or socket 
– Distributed memory architecture between nodes 
– Typical Hybrid Programming Model: hybrid MPI/OpenMP, ... 
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Current architecture trend 

•  Multi-socket nodes with rapidly increasing core counts  
•  Memory per core decreases 
•  Memory bandwidth per core decreases 
•  Network bandwidth per core decreases 
•  Need a hybrid programming model with three levels of 

parallelism 
– MPI between nodes or sockets 
– Shared memory (such as OpenMP) on the nodes/sockets 
–  Increase vectorization for lower level loop structures 
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NUMA systems 
• Most systems today are Non-Uniform Memory Access (NUMA) 
• Accessing memory in remote NUMA is slower than accessing 

memory in local NUMA 
• Accessing High Bandwidth Memory is faster than DDR 

 

Diagram courtesy Ruud van der Pas 

All modern CPUs include caches therefore all 
modern systems are NUMA even though we 
often pretend they are UMA 
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Deep out-of-order buffers 
Gather/scatter in hardware 

Improved branch prediction 
4 threads/core 

High cache bandwidth 

    NUMA example: the Intel® Xeon Phi™ processor 
 

•  Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not include 
all functional areas of the CPU, nor does it represent actual component layout. 
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   Example compute nodes (Intel Haswell*) 

•  An Intel Haswell node has 32 cores (64 CPUs), 128 MB DDR memory. 
•  2 NUMA domains per node, 16 cores per NUMA domain.  2 hardware 

threads (CPUs) per core. 
•  Memory bandwidth is non-homogeneous among NUMA domains. 
–  CPUs 0-15, 32-47 are closer to memory in NUMA domain 0, farther to memory in NUMA 

domain 1. 
–  CPUs 16-31, 48-64 are closer to memory in NUMA domain 1, farther to memory in NUMA 

domain 0. 

*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz 114 



Tools to check compute node info 

•  numactl: controls NUMA policy for processes or shared memory 
– numactl -H: provides NUMA info of the CPUs  

% numactl -H  
available: 2 nodes (0-1) 
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
node 0 size: 64430 MB 
node 0 free: 63002 MB 
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 
60 61 62 63 
node 1 size: 64635 MB 
node 1 free: 63395 MB 
node distances:node   0   1    
0:  10  21    
1:  21  10  

Cori Haswell node example 
32 cores, 2 sockets 
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   Example compute nodes (Cori KNL*) 

•  A quad,cache node has only 1 NUMA node with all CPUs on the NUMA node 0 (DDR 
memory). The MCDRAM is hidden from the “numactl -H” result since it is a cache.  

•  A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR 
memory). And NUMA node 1 has MCDRAM only. 

•  A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA nodes 0 
and 1.  (NUMA node 0 has physical cores 0 to 33 and all corresponding hyperthreads, and 
NUMA node 1 has physical cores 34 to 67 and all corresponding hyperthreads). NUMA 
nodes 2 and 3 have MCDRAM only. 

•  A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high 
bandwidth on package memory (MCDRAM). 

•  Three cluster modes, all-to-all, quadrant, sub-NUMA clustering, are available 
at boot time to configure the KNL mesh interconnect. 

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz  116 



available: 2 nodes (0-1) 
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 
264 265 266 267 268 269 270 271 
node 0 size: 96723 MB 
node 0 free: 93924 MB 
node 1 cpus:  
node 1 size: 16157 MB 
node 1 free: 16088 MB 
node distances: 
node   0   1  
  0:  10  31  
  1:  31  10  

Intel KNL quad,flat node example 
  
% numactl –H 

 

•  The quad,flat mode has only 2 NUMA nodes with all CPUs on the 
NUMA node 0 (DDR memory).  

•  And NUMA node 1 has MCDRAM (high bandwidth memory). 

Cori KNL quad,flat node example 
64 cores, 272 hardware threads  
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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What do Data Locality and Affinity mean in OpenMP 

•  Data Locality 
– Memory Locality: allocate memory as close as possible to the core 

on which the task that requested the memory is running 
– Cache Locality: use data in cache as much as possible  

•  Affinity 
– Process Affinity: bind processes (MPI tasks, etc.) to CPUs 
– Thread Affinity: further binding threads to CPUs that are allocated to 

their parent process 

•  Correct process, thread and memory affinity is the basis for 
getting optimal performance.  
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     Memory Locality 

•  Memory access from different NUMA domains are different 
– Accessing memory in remote NUMA is slower than accessing 

memory in local NUMA 
– Accessing High Bandwidth Memory on KNL* is faster than DDR 

•  OpenMP does not explicitly map data across shared 
memories 

•  Memory locality is important since it impacts both memory 
and intra-node performance 

 
 

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 Ghz  … the 
“bootable” version that sits in a socket, not a co-processor 
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OpenMP Thread Affinity  
•  OpenMP provides a mechanism to map threads to hardware 

execution units (e.g. hardware threads, cores, sockets), with the 
following goals: 
–  Maximize resource utilization  
–  Minimize thread contention for the same hardware resource 
–  Maximize local accesses and minimize remote memory accesses in 

NUMA 
•  Develop strategies for memory latency programs vs. memory 

bandwidth bound programs 
–  Cache reuse by threads 
–  Bandwidth aggregation 
–  Reduce thread synchronization overheads 

•  Bind OpenMP threads to the hardware threads or cores  
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OpenMP thread affinity concepts 

• Three main concepts: 

OpenMP  
Threads 

Mapping 
Strategy 

OMP_PLACES 
Environment Variable 

(e.g. threads, cores, 
sockets) 

OMP_PROC_BIND 
Environment Variable 

Or 
proc_bind() clause 

of parallel region 
 
 

OMP_NUM_THREADS 
Environment Variable 

Or 
num_threads() clause 

of parallel region 
 

Courtesy of Oscar Hernandez, ORNL 
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  Runtime Environment Variable: OMP_PLACES (1) 

•  OpenMP 4.0 added OMP_PLACES environment variable 
–  controls thread allocation 
– defines a series of places to which the threads can be assigned 

•  OMP_PLACES can be 
–  threads: each place corresponds to a single hardware thread on the 

target machine.  
–  cores: each place corresponds to a single core (having one or more 

hardware threads) on the target machine.  
–  sockets: each place corresponds to a single socket (consisting of one 

or more cores) on the target machine.  
– A list with explicit CPU ids (see next slide)  

•  Examples: 
– export OMP_PLACES=threads 
– export OMP_PLACES=cores 
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   Runtime Environment Variable: OMP_PLACES (2) 

•  OMP_PLACES can also be 
– A list with explicit place values of CPU ids, such as:  
–  "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}”  
–  “{0:4},{4:4},{8:4},{12:4}” (default stride is 1) 
–  Format: {lower-bound:length:stride}. Thus, specifying {0:3:2} is the same 

as specifying {0,2,4} 

•  Examples: 
–  export OMP_PLACES=“ {0:4:2},{1:4:2}”  (which is equivalent to “{0,2,4,6},

{1,3,5,7}”) 
–  export OMP_PLACES=“{0:8:1}”  (which is equivalent to “{0,1,2,3,4,5,6,7}” 
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Runtime Environment Variable: OMP_PROC_BIND 
 
 •  Controls thread affinity within and between OpenMP places 

•  OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or 
FALSE. 
–  If true, the runtime will not move threads around between processors. 

•  OpenMP 4.0 still allows the above. Added options: 
–  close: bind threads close to the master thread 
–  spread: bind threads as evenly distributed (spread) as possible 
– master: bind threads to the same place as the master thread 

             (Can be used when master thread is bound to core or socket) 

•  Examples:  
– OMP_PROC_BIND=spread 
– OMP_PROC_BIND=spread,close (for nested levels) 
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Considerations for OMP_PROC_BIND choices 

•  Selecting the “right” binding is dependent on the 
architecture topology but also on the application 
characteristics 

•  Putting threads apart (“spread”, e.g. different sockets) 
–  Can help to improve aggregated memory bandwidth 
–  Combine the cache sizes across cores 
–  May increase the overhead of synchronization across far apart 

threads 
–  Aggregates memory bandwidth to/from accelerator(s)  

•  Putting threads near (“close”, e,g. hardware threads or 
cores sharing caches) 
–  Reverse impact as “spread” 
–  Good for synchronization and data reuse 
–  May decrease total memory bandwidth 
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Runtime Environment Variable: OMP_PROC_BIND (2) 

•  Prototype example: 4 cores total, 2 hyperthreads per core, 4 OpenMP threads 
•  none: no affinity setting.  
•  close: Bind threads as close to each other as possible 
 

 
•  spread: Bind threads as far apart as possible.    

 

 
•  master: bind threads to the same place as the master thread 

 

Node     Core 0     Core 1    Core 2     Core 3 

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2 

Thread 0 1 2 3 

Node     Core 0     Core 1    Core 2     Core 3 

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2 

Thread 0 1 2 3 
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  Memory Affinity: “First Touch” memory 

Red:  step 1.1 + step 2.  No First Touch 
Blue: step 1.2 + step 2.  First Touch 

  Step 1.1 Initialization              
  by master thread only  
  for (j=0; j<VectorSize; j++) {  
  a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;} 
 
  Step 1.2 Initialization  
  by all threads 
  #pragma omp parallel for  
  for (j=0; j<VectorSize; j++) {  
  a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;} 
 
  Step 2 Compute 
  #pragma omp parallel for 
  for (j=0; j<VectorSize; j++) { 
  a[j]=b[j]+d*c[j];} 

•  Memory affinity is not defined when 
memory was allocated, instead it will be 
defined at initialization.  

•  Memory will be local to the thread which 
initializes it. This is called first touch 
policy.  

OMP_PROC_BIND=close 
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“Perfect Touch” is hard 
•  Hard to do “perfect touch” for real applications.   
•  General recommendation is to use number of threads 

fewer than number of CPUs per NUMA domain. 
•  For example: 16 cores (32 CPUs) per NUMA domain. 

Sample run options: 
– 2 MPI tasks, 1 MPI task per NUMA domain, with 32 OpenMP 

threads (if using hyperthreads) or 16 OpenMP threads (if not using 
hyperthreads) per MPI task  
– 4 MPI tasks, 2 MPI tasks per NUMA domain, with 16 OpenMP 

threads (if using hyperthreads) or 8 OpenMP threads (if not using 
hyperthreads) per MPI task 
– … 
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  Cache coherence and false sharing 
•  ccNUMA node: cache-coherence NUMA node. 
•  Data from memory are accessed via cache lines. 
•  Multiple threads hold local copies of the same (global) data in their caches. 

Cache coherence ensures the local copy to be consistent with the global data. 
•  Main copy needs to be updated when a thread writes to local copy.  
•  Writes to same cache line from different threads is called false sharing or 

cache thrashing, since it needs to be done in serial. Use atomic or critical to 
avoid race condition. 

 
•  False sharing significantly degrade performance. Tips for avoiding: 
–  use private variables 
–  pad arrays so each thread will update a different cache line  
–  use critical or atomic for update 
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  False sharing example 

False sharing 
int A[N]; 
#pragma omp parallel for schedule (static, 1) 
for (i=0; i<N; i++) { 
 A[i] += i; 

No false sharing, array is padded 
int A[N][cache_line_size]; 
#pragma omp parallel for schedule (static, 1) 
for (i=0; i<N; i++) { 
 A[i][0] += i; 

•  One solution: Pad arrays so elements you use are on distinct 
cache lines. 

•  Array A is shared.  Chunk size is 1.  
•  Updating A[0] or A[1] requires entire cache line update to 

retain cache coherency. 
•  Loop essentially becomes serial. 
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    Cache Locality 
•  Cache locality means to use data in cache as much as 

possible  
•  Tips often used in real codes 
– Pin threads and associate threads onto regions of system 
– Exploit “first touch” data policy  
– Privatize data 
– Optimize code for cache 
– Use a memory stride of 1 
–  Fortran: column-major order 
–  C: row-major order 

–  Access variable elements in the same order as they are stored in 
memory 

–  Interchange loops or index orders if necessary 

•  If performance is bad, look for false sharing 
– Occurs frequently, performance degradation can be catastrophic 
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   OMP_PROC_BIND choices for STREAM 

OMP_NUM_THREADS=32 
OMP_PLACES=threads 
 
OMP_PROC_BIND=close 
Threads 0 to 31 bind to CPUs 
0,32,1,33,2,34,…15,47.  All 
threads are in the first socket.  The 
second socket is idle.  Not optimal. 
 
OMP_PROC_BIND=spread 
Threads 0 to 31 bind to CPUs 
0,1,2,… to 31.  Both sockets and 
memory are used to maximize 
memory bandwidth. 

Blue:  OMP_PROC_BIND=close 
Red:   OMP_PROC_BIND=spread 
Both with First Touch 
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Other Runtime Environment Variables for 
affinity support 
 

•  OMP_NUM_THREADS 
•  OMP_THREAD_LIMIT 
•  OMP_NESTED 
•  OMP_MAX_ACTIVE_LEVELS 
 
•  Names are upper case, values are case insensitive 
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   Affinity clauses for OpenMP parallel construct 

•  The “num_threads” and “proc_bind” clauses can be used 
– The values set with these clauses take precedence over values set 

by runtime environment variables 

•  Helps code portability 
•  Examples: 
– C/C++: 
    #pragma omp parallel num_threads(2) proc_bind(spread) 
– Fortran: 
   !$omp parallel num_threads (2) proc_bind (spread) 

       ... 
        !$omp end parallel  
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  Runtime APIs for thread affinity support 

•  OpenMP 4.5 added runtime functions to determine the effect 
of thread affinity clauses 

•  Query functions for OpenMP thread affinity were added  
– omp_get_num_places: returns the number of places 
– omp_get_place_num_procs: returns number of processors in the 

given place 
– omp_get_place_proc_ids: returns the ids of the processors in the 

given place 
– omp_get_place_num: returns the place number of the place to 

which the current thread is bound 
– omp_get_partition_num_places: returns the number of places in 

the current partition 
– omp_get_partition_place_nums: returns the list of place numbers 

corresponding to the places in the current partition 
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 Other Runtime APIs for thread affinity support 

•  omp_get_nested, omp_set_nested 
•  omp_get_thread_limit 
•  omp_get_level 
•  omp_get_active_level 
•  omp_get_max_active_levels, omp_set_max_active_levels 
•  omp_get_proc_bind, omp_set_proc_bind 
•  omp_get_num_threads, omp_set_num_threads 
•  omp_get_max_threads 
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Exercise: “First Touch” with STREAM benchmark 

•  STREAM benchmark codes: stream.c, stream.f 
•  Check the source codes to see if “first touch” is implemented 
•  With “first touch” on (stream.c) and off (stream_nft.c),  experiment with 

different OMP_NUM_THREADS and OMP_PROC_BIND settings to 
understand how “first touch” and OMP_PROC_BIND choices affect 
STREAM memory bandwidth results on Haswell (look at the Best Rate 
for Triad in the output). 

•  Compare your results with a few data points on the two STREAM plots 
shown earlier in this slide deck. 
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  Sample nested OpenMP program 

#include <omp.h> 
#include <stdio.h> 
void report_num_threads(int level) 
{ 
    #pragma omp single { 
         printf("Level %d: number of threads in the 
team: %d\n", level, omp_get_num_threads()); 
        } 
} 
int main() 
{ 
    omp_set_dynamic(0); 
    #pragma omp parallel num_threads(2) { 
        report_num_threads(1); 
        #pragma omp parallel num_threads(2) { 
            report_num_threads(2); 
            #pragma omp parallel num_threads(2) { 
                report_num_threads(3); 
            } 
        } 
    } 
    return(0); 
} 

% a.out    
Level 1: number of threads in the team: 2 
Level 2: number of threads in the team: 1 
Level 3: number of threads in the team: 1 
Level 2: number of threads in the team: 1 
Level 3: number of threads in the team: 1 

% export OMP_NESTED=true 
% export OMP_MAX_ACTIVE_LEVELS=3 
% a.out 
Level 1: number of threads in the team: 2 
Level 2: number of threads in the team: 2 
Level 2: number of threads in the team: 2 
Level 3: number of threads in the team: 2 
Level 3: number of threads in the team: 2 
Level 3: number of threads in the team: 2 
Level 3: number of threads in the team: 2 

Level 0: P0 
Level 1: P0 P1 
Level 2: P0 P2; P1 P3 
Level 3: P0 P4; P2 P5; P1 P6; P3 P7 
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Process and Thread Affinity in nested OpenMP 

•  A combination of OpenMP environment variables and run time flags are needed 
for different compilers and different batch schedulers on different systems.  

 

 

 
•  Use num_threads clause in source codes to set threads for nested regions.  
•  For most other non-nested regions, use OMP_NUM_THREADS environment 

variable for simplicity and flexibility. 

Example: Use Intel compiler with SLURM on Cori Haswell: 
export OMP_NESTED=true 
export OMP_MAX_ACTIVE_LEVELS=2 
export  OMP_NUM_THREADS=4,4 
export OMP_PROC_BIND=spread,close 
export OMP_PLACES=threads 
srun -n 4 -c 16 --cpu_bind=cores ./nested.intel.cori   

spread  

close  

Illustration of a system with: 
2 sockets, 4 cores per socket,  
4 hyper-threads per core 

initial 

#pragma omp parallel proc_bind(spread) 
      #pragma omp parallel proc_bind(close)  

140 



   When to use nested OpenMP 

•  Beneficial to use nested OpenMP to allow more fine-grained 
thread parallelism.  

•  Some application teams are exploring with nested OpenMP 
to allow more fine-grained thread parallelism. 
– Hybrid MPI/OpenMP not using node fully packed 
– Top level OpenMP loop does not use all available threads 
– Multiple levels of OpenMP loops are not easily collapsed 
– Certain computational intensive kernels could use more threads 
– MKL can use extra cores with nested OpenMP 

•  Nested level can be arbitrarily deep. 
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  Use multiple threads in MKL 

•  By Default, in OpenMP parallel regions, only 1 thread will be 
used for MKL calls.  
– MKL_DYNAMICS is true by default 

•  Nested OpenMP can be used to enable multiple threads for 
MKL calls.  Treat MKL as a nested inner OpenMP region. 

•  Sample settings 

export OMP_NESTED=true 
export OMP_PLACES=cores 
export OMP_PROC_BIND=spread,close 
export OMP_NUM_THREADS=6,4 
export MKL_DYNAMICS=false   
export OMP_MAX_ACTIVE_LEVELS=2 

FFT3D on KNC, Ng=643 example  

Courtesy of Jeongnim Kim,  Intel  

*KNC: Intel® Xeon Phi™ processor (Knights Corner) … the first generation co-processor version of the chip.  
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  Exercise: affinity choices 
•  Pure OpenMP code: xthi-omp.c  
•  Nested OpenMP code: xthi-nested-omp.c 
•  Sample output: 

% ./xthi-omp |sort –k4n 
Hello from thread 0, on nid00011. (core affinity = 0) 
Hello from thread 1, on nid00011. (core affinity = 4) 
Hello from thread 2, on nid00011. (core affinity = 8) ... 

•  Experiment with different OMP_NUM_THREADS, 
OMP_PROC_BIND, and OMP_PLACES settings to check thread 
affinity on different compute node architectures (for example, Cori 
Haswell and KNL).   

•  Make sure to understand the CPU output values in “core affinity=xxx” 
report.    
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Essential runtime settings for KNL MCDRAM 
Memory Affinity  
•  In quad, cache mode, no special setting is needed to use 

MCDRAM 
•  In quad,flat mode, using quad,flat as an example 
– NUMA node 1 is MCDRAM 

•  Enforced memory mapping to MCDRAM 
–  If using >16 GB, malloc will fail 
– Use “numactl -m 1 ./myapp” as the executable     

•         (instead of “./myapp”) 

•  Preferred memory mapping to MCDRAM:   
–  If using >16 GB, malloc will spill to DDR 
– Use “numactl -p 1 ./myapp” as the executable  

       (instead of “./myapp”) 
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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Choice of programming models for modern 
HPC systems 

•  MPI was developed primarily for inter-address space (inter means between or among) 

•  OpenMP was developed for shared memory or intra-node, and now supports 
accelerators as well (intra means within) 

•  Hybrid Programming (MPI+X) is when we use a solution with different programming 
models for inter vs. intra-node parallelism 

•  Several solutions including 
–  Pure MPI 
–  MPI + Shared Memory (OpenMP) 
–  MPI + Accelerator programming  

•  OpenMP 4.5 shared memory + offload, OpenACC, CUDA, etc 
–  MPI message passing + MPI shared memory 
–  PGAS: UPC/UPC++, Fortran 2008 coarrays, GA, OpenSHMEM, etc 
–  Runtime tasks  (Legion, HPX, HiHat (draft), etc) 
–  Other hybrid based on Kokkos, Raja, SYCL, C++17 (C++20 draft)  
 
 

NERSC data from 2015:  
When asked: If you use MPI + X, 
what is X ? 

Courtesy of Alice Koniges and Oscar Hernandez 
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Why Hybrid MPI + OpenMP? 
• Homogeneous and Heterogeneous systems have large core counts per 

node. For example: 
– NERSC Cori: Xeon Phi (KNL) 68 cores, 4 hardware threads per core. Total of 272 

threads per node 
– ORNL Summit: Total 176 (SMT4) Power9 threads + 6 Volta GPUs per node  

• Application may run with MPI everywhere, but possibly not good 
performance 
– Needs hybrid programming to manage threading, improve SIMD, accelerator 

programming 
• Hybrid MPI/OpenMP is a recommended programming model to achieve 

scaling capability and code portability, new trend 
•  Incremental parallelism with OpenMP for cores and accelerators  
• Some applications have two levels of parallelism naturally; advanced 

OpenMP features extend beyond the two-level model 
• Some problems have a natural restriction on the number of MPI tasks 
• Avoids extra communication overhead within the node 
• Adds fine granularity (larger message sizes) and allows increased 

dynamic load balancing across MPI tasks 
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Hybrid MPI/OpenMP reduces memory usage 
•  Many applications will not fit into the node memory using 

Pure MPI (e.g. per core) because of the memory overhead 
for each MPI task 

•  Smaller number of MPI processes. Save the memory 
needed for the executables and process stack copies. 

•  Larger domain for each MPI process, so fewer ghost cells 
– e.g. Combine 16 10x10 domains to one 40x40. Assume 2 ghost 

layers. 
– Total grid size: Original: 16x14x14=3136, new: 44x44=1936. 

•  Save memory for MPI buffers due to smaller number of MPI 
tasks. 

•  Fewer messages, larger message sizes, and smaller MPI all-
to-all communication sizes improve performance.  
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Example of Hybrid Code 

Program hybrid 
 call MPI_INIT_THREAD (required, provided, ierr) 
 call MPI_COMM_RANK (…) 
 call MPI_COMM_SIZE (…) 
  …  some computation and MPI communication 
  call OMP_SET_NUM_THREADS(4) 
 !$OMP PARALLEL DO PRIVATE(i) 
 !$OMP&                    SHARED(n) 
    do i=1,n 
        … computation 
    enddo 
  !$OMP END PARALLEL DO  
  …  some computation and MPI communication 
 call MPI_FINALIZE (ierr) 
 end 
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Supported levels of thread safety  
• Defined by MPI standard in the form of commitments a multithreaded 

application makes to the MPI implementation.  Not specific to hybrid 
MPI/OpenMP. 

• Use MPI_INIT_THREAD (required, provided, ierr), as an alternative to 
MPI_INIT (ierr) 
–  IN: “required”, desired level of thread support (integer) 
– OUT: “provided”, provided level of thread support (integer) 
– Returned “provided” maybe lower than “required” 

•  Thread support levels: 
– MPI_THREAD_SINGLE: Only one thread will execute 
– MPI_THREAD_FUNNELED: Process may be multi-threaded, but only master thread 

will make MPI calls (all MPI calls are ’’funneled'' to master thread) 
– MPI_THREAD_SERIALIZED: Process may be multi-threaded, multiple threads may 

make MPI calls, but only one at a time: MPI calls are not made concurrently from 
two distinct threads (all MPI calls are ’’serialized'') 

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions 
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Thread support levels 
environment variable 

MPICH_MAX_THREAD_SAFET
Y  

thread support level 

not set MPI_THREAD_SINGLE 

single MPI_THREAD_SINGLE 

funneled MPI_THREAD_FUNNELED 

serialized MPI_THREAD_SERIALIZED 

multiple MPI_THREAD_MULTIPLE 

• Different compilers may have different max level of thread support 

• Make sure to set the environment variable in order to get the desired thread level. 
Otherwise, you may get a lower level than desired even if the compiler supports it 
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MPI calls inside OMP MASTER 
• MPI_THREAD_FUNNELED is required 
• OMP MASTER does not include any barrier. If the application needs 

a barrier (e.g., to prevent race conditions between the buffer usage in 
the MPI call and some numerical buffer read or write in other threads) 
then explicit OMP BARRIERs may be needed 

• Such barriers would imply that all other threads are sleeping while the 
master thread does MPI communication!  (may not be able to 
saturate the inter-node bandwidth) 
 

!$OMP BARRIER 
!$OMP MASTER 
     call MPI_xxx(…) 
!$OMP END MASTER 
!$OMP BARRIER 
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MPI calls inside OMP SINGLE 

• MPI_THREAD_SERIALIZED is required 
• OMP_BARRIER or an implicit barrier is needed at the beginning since 

OMP_SINGLE only guarantees synchronization at the end 
•  It also implies all other threads are sleeping while one thread does MPI 

communication!  (may not be able to saturate the inter-node bandwidth) 
 

!$OMP BARRIER 
!$OMP SINGLE 
     call MPI_xxx(…) 
!$OMP END SINGLE 
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THREAD FUNNELED/SERIALIZED vs. Pure MPI 

•  FUNNELED/SERIALIZED:  
– All other threads are sleeping while single thread communicating  
– Only one thread communicating maybe not able to saturate the 

inter-node bandwidth 

•  Pure MPI: 
– Every CPU communicating may over saturate the inter-node 

bandwidth 

•  Overlap communication with computation! 
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Overlap communication and computation  
•  Is a good strategy for improving performance  

– Use MPI inside parallel region with thread-safe 
MPI 

• Need at least MPI_THREAD_FUNNELED 
• Many “easy” hybrid programs only need 

MPI_THREAD_FUNNELED 
– Simplest and least error-prone way is to use 

MPI outside parallel region, and allow only 
master thread to communicate between MPI 
tasks 

– While this single master is making MPI calls, 
other threads are computing 

• Must be able to separate codes that can run 
before or after ghost zone or halo info is 
received. Can be very hard conceptually 

• May lose compiler optimizations such as 
vectorization 

 !$OMP PARALLEL 
     if (my_thread_rank < 1) then    
         call MPI_xxx(…) 
     else 
         do some computation 
     endif 
 !$OMP END PARALLEL 
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PARSEC: overlap comp and comm (1) 
 

Original Force Pseudocode 
 
do type 
   do atom 
      calc A & B 
      reduceAll A & B to master 
      calc ∆force = f(A&B) on master 
      store force on master 
   end atom 
end type 

➢  Preemptively create an array of comms, 
one for each atom, to allow mpi ranks 
without data to move to the next atom 

➢  Atom loop is threaded, allowing 
multiple atoms to be solved 
simultaneously 

➢  Use MPI_THREAD_MULTIPLE, 
multiple threads call MPI 

 

Improved Version with 
MPI_THREAD_MULTIPLE 
 
do type 
   MPI_COMM_SPLIT(atom, rank_has_data) 
   !$OMP DO 
   do atom  
      if comm(atom) = MPI_COMM_NULL, cycle 
      calc A & B 
      reduceAll(comm(atom), A) 
      calc ∆force = f(A&B) 
      reduceAll(comm(atom), ∆force) 
      store locally with master of comm(atom)  
   end atom 
   !$OMP END DO 
end type 
 
Courtesy	of	Kevin	Go;,	NERSC 
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PARSEC: overlap comp and comm (2) 
 

Courtesy	of	Kevin	Go;,	NERSC 
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MPI vs. OpenMP scaling analysis for optimal 
configuration 

Low
er is B

etter 

Courtesy of Chris Daley, NERSC 

Find the sweet spot for hybrid MPI/OpenMP  

•  Each line represents multiple 
runs using fixed total number 
of cores = #MPI tasks x 
#OpenMP threads/task 

•  Scaling may depend on the 
kernel algorithms and problem 
sizes 

•  In this test case, 15 MPI tasks 
with 8 OpenMP threads per 
task is optimal  
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VASP: MPI/OpenMP Scaling Study 

Courtesy	of	Zhengji	Zhao,NERSC	

•  Original MPI parallelization 
– Over the bands (high level)
– Over Fourier coefficient of the bands (low level) 

•  MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of 

bands, either by explicitly adding OpenMP 
directives or via using threaded FFTW and 
LAPACK/BLAS3 libraries

– No nested OpenMP
– SIMD vectorization is deployed extensively
– MPI/OpenMP scaling study to find the sweet 

spot
– Other tuning options
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Best practices for Hybrid MPI/OpenMP (1) 
•  With sequential code, decompose with MPI first, then add OpenMP 
 
•  Use profiling tools to find hotspots. Add OpenMP and check 

correctness incrementally 
•  Choose between fine grain or coarse grain parallelism 

implementation 
•  Reduce number of OpenMP parallel regions to reduce overhead 

costs 
•  Parallelize outer loop and consider loop collapse, loop fusion or loop 

permutation to give all threads enough work, and to optimize thread 
cache locality.  Use NOWAIT clause if possible 

•  Minimize shared variables, minimize serial/critical/barrier sections 
•  Pay attention to load imbalance. If needed, try dynamic scheduling 

or implement own load balance scheme 
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Best practices for Hybrid MPI/OpenMP (2) 
• Decide whether to overlap MPI communication with thread computation 
 
• Simplest and least error-prone way is to use MPI outside parallel region, 

and allow only master thread to communicate between MPI tasks. 
MPI_THREAD_FUNNELED is usually the best choice. 

• Consider OpenMP TASKing 
• Consider nested OpenMP 
• Consider OpenMP SIMD for better vectorization 
• Experiment with different combinations of MPI tasks and number of 

threads per task. Less MPI tasks may not saturate inter-node bandwidth 
• Be aware of NUMA domains 
• Leave some cores idle on purpose, for memory capacity or bandwidth 

capacity 
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Why Hybrid MPI/OpenMP code is sometimes slower? 

•  All threads are idle except one while MPI communication         
– Need overlap comp and comm for better performance 
– Critical Section for shared variables 

•  Thread creation overhead 
•  Cache coherence, false sharing 
•  Data placement, NUMA effects 
•  Natural one level parallelism problems 
•  Pure OpenMP code performs worse than pure MPI within 

node 
•  Lack of optimized OpenMP compilers/libraries 
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Hybrid programming with MPI + OpenMP 
is a viable and efficient model 

•  MPI+OpenMP interoperability can happen in multiple ways – 
Funneled and Serialized modes are most common where a single 
thread makes MPI calls at a time 

•  THREAD_MULTIPLE is becoming increasingly common where 
multiple threads can make MPI calls simultaneously (“fully multi‐
threaded”) 
– Now provided by almost all implementations 
– Optimization is important 

•  Other options such as “MPI everywhere” are also possible, 
especially with advanced MPI options 
– Solutions with no MPI (not covered here) are also emerging (HPX) 

•  Improvements such as “endpoints” (multiple addressable communication 
entities within a single MPI process) may eventually lead to more options 
than just funneled, serialized, and multiple 

Courtesy of Alice Koniges 
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Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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A naive “srun” causes a mess in process/
thread affinity 

Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache node 
% export OMP_NUM_THREADS=8 

% export OMP_PROC_BIND=spread    (other choice are “close”,”master”,”true”,”false”) 

% export OMP_PLACES=threads   (other choices are: cores, sockets, and various ways to specify 
explicit lists) 

 
% srun -n 16  ./xthi |sort -k4n,6n 

         Hello from rank 0, thread 0, on nid02304. (core affinity = 0) 
         Hello from rank 0, thread 1, on nid02304. (core affinity = 144)  (on physical core 8) 
         Hello from rank 0, thread 2, on nid02304. (core affinity = 17) 
         Hello from rank 0, thread 3, on nid02304. (core affinity = 161)        (on physical core 25) 
         Hello from rank 0, thread 4, on nid02304. (core affinity = 34) 
         Hello from rank 0, thread 5, on nid02304. (core affinity = 178)        (on physical core 42) 
         Hello from rank 0, thread 6, on nid02304. (core affinity = 51) 
         Hello from rank 0, thread 7, on nid02304. (core affinity = 195)        (on physical core 59) 
         Hello from rank 1, thread 0, on nid02304. (core affinity = 0) 
         Hello from rank 1, thread 1, on nid02304. (core affinity = 144)   (on physical core 8) 

    ... 
 It is a mess! 
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Cori KNL: the importance of “srun” -c and 
--cpu_bind Options 
• The reason: 68 is not divisible by #MPI tasks!   

– Each MPI task is getting 68x4 / #MPI tasks of logical cores as the 
domain size 

– MPI tasks are crossing tile boundaries 

• Let’s set number of logical cores per MPI task (-c) manually by 
wasting extra 4 cores on purpose, which is 256 / #MPI tasks 
– Meaning to use 64 cores only on the 68-core KNL node, and spread 

the logical cores allocated to each MPI task evenly among these 64 
cores 

 
– Now It looks good! 

 

% srun -n 16 -c 16 --cpu_bind=cores ./xthi 
Hello from rank 0, thread 0, on nid09244. (core affinity = 0) 
Hello from rank 0, thread 1, on nid09244. (core affinity = 136) (on physical core 0) 
Hello from rank 0, thread 2, on nid09244. (core affinity = 1) 
Hello from rank 0, thread 3, on nid09244. (core affinity = 137) (on physical core 1) 
 ... 
 

Similarly with Intel MPI: 
% export I_MPI_PIN_DOMAIN=16 
% mpirun -n 16 ./xthi 
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Now it looks good! 

0 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 
204 220 221 
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
86 102 103 
154 155 156 157 158 159 160 161 170 171 
222 238 239 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
104 
172 
240 
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
120 
188 196  197 198 199 
256 

And so on for other MPI tasks and 
threads …. 

Process/thread affinity are good! (Marked first 6 and last MPI tasks only) 

MPI 
rank 0 
MPI 
rank 1 
MPI 
rank 2 
MPI 
rank 3 
MPI 
rank 4 
MPI 
rank 5 

MPI rank 
15 

…. 
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Cori: essential runtime settings for 
process/thread affinity 

• Use srun -c and --cpu_bind flags to bind tasks to CPUs 
–  -c <n> (or --cpus-per-task=n) allocates (reserves) n CPUs per task 

(process). It helps to evenly spread MPI tasks 
– Use --cpu_bind=cores (no hyperthreads) or --cpu_bind=threads (if 

hyperthreads are used) 

• Use OpenMP envs, OMP_PROC_BIND and OMP_PLACES to fine 
pin each thread to a subset of CPUs allocated to the host task 
– Different compilers may have different default values for them 
– The following provide compatible thread affinity among Intel, GNU and Cray 

compilers: 
OMP_PROC_BIND=true # Specifying threads may not be moved between CPUs 
OMP_PLACES=threads  # Specifying a thread should be placed in a single CPU 
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Cori: essential runtime settings for 
MCDRAM memory affinity  

•  In quad,cache mode, no special setting is needed to use 
MCDRAM 

•  In quad,flat mode, using quad,flat as an example 
– NUMA node 1 is MCDRAM 

• Enforced memory mapping to MCDRAM 
–  If using >16 GB, malloc will fail 
– Use “numactl -m 1 ./myapp” as the executable  (instead of “./myapp”) 
– Or add “--mem_bind=map_mem:1” as an “srun” flag 

• Preferred memory mapping to MCDRAM  
–  If using >16 GB, malloc will spill to DDR 
– Use “numactl -p 1 ./myapp” as the executable (instead of “./myapp”) 
– Or add “--mem_bind=preferred:map_mem:1” as an “srun” flag 
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Cori: sample job script to run on KNL 
quad,cache nodes 

Courtesy of Zhengji Zhao, NERSC 
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Courtesy of Zhengji Zhao, NERSC 

Cori: sample job script to run on KNL 
quad,cache nodes 
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              Adapted from Zhengji Zhao, NERSC 

Cori: sample job script to run on KNL 
quad,flat nodes 
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Naïve vs. optimal affinity 

Application Benchmark Performance on Cori 
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Exercise: hybrid MPI/OpenMP affinity choices 
•  Hybrid MPI/OpenMP code: xthi.c 
•  Nested OpenMP code: xthi-nested.c 
•  Sample output: 

% srun -n 2 -c 32 --cpu_bind=cores ./xthi |sort -k4n,6n 
       Hello from rank 0, thread 0, on nid00019. (core affinity = 0) 
       Hello from rank 0, thread 1, on nid00019. (core affinity = 2) 
        Hello from rank 0, thread 2, on nid00019. (core affinity = 4) … 

•  Experiment with different OMP_NUM_THREADS, 
OMP_PROC_BIND, and OMP_PLACES settings to check thread 
affinity on different compute node architectures (for example, Cori 
Haswell and KNL). 

•  Try different compilers.  Compile your own or use our pre-built 
binaries:  check-hybrid.cori.intel, check-hybrid.cori.gnu 
–  Compare OMP_PROC_BIND=spread vs OMP_PROC_BIND=true for gnu compiler 
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Upcoming in OpenMP 5.0: Display Affinity 

•  Berkeley Lab proposed to have the display affinity support.  
– Accepted into TR6 for OpenMP 5.0 

•  Two runtime environment variables 
– OMP_DISPLAY_AFFINITY 
– OMP_DISPLAY_AFFINITY_FORMAT 

•  Runtime APIs to get/set the thread affinity info 
– omp_get_display_affinity, omp_set_display_affinity 
– omp_get_affinity_format, omp_set_affinity_format 
– omp_display_affinity  
– omp_capture_affinity        # write into buffer 
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OMP_AFFINITY_FORMAT fields 
 Short Name Long name Meaning 

L thread_level from omp_get_level() 

n thread_num from omp_get_thread_num() 

a thread_affinity the numerical identifiers of the processors the current thread is 
binding to, in the format of a comma separated list of OpenMP 
thread places or a range of thread places described with non-
negative numbers as those used in OMP_PLACES. 

h host host or node name 

p process_id process id used by the implementation (such as the process id for 
the MPI process) 

N num_threads from omp_get_num_threads() 

A ancestor_tnum from omp_get_ancestor_thread_num(). One level up only. 

Sample display using format "Thread Affinity: %0.5L, %.10n, %.20a”: 
Thread Affinity:00001,              0,                   0-3 
Thread Affinity:00001,              1,                   4-7 
 

176 



Outline 
•  The common core: a quick review 
•  OpenMP Tasks 
•  The divide and conquer pattern 
•  Task group, task loops, and more 
•  Threadprivate 
•  The other workshare constructs 
•  Do across loops 
•  The OpenMP Memory model 
•  Point to point synchronization, atomic, and locks 
•  NUMA systems 
•  Thread affinity 
•  Hybrid MPI/OpenMP 
•  More about process and thread affinity 
•  A quick survey of the rest of OpenMP 
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An Outline of OpenMP 

•  Parallel Construct and associated 
clauses 
–  Create a team of threads 

•  Data Environment 
–  Controlling how data is shared 

•  Worksharing constructs: 
–  Splitting up work among a team of 

threads 
•  SIMD constructs 
–  Explicit vectorization 

•  Task Constructs 
–  Create and manage explicit tasks 

•  Device Constructs 
–  Offloading work to GPUs, many-core 

CPUs, and other attached devices 
 

•  Synchronization (and the master 
construct) 
–  Add order constraints to your parallel 

program 
•  Cancelation 
–  Ending work in a controlled manner 

•  User Defined Reductions 
–  Generalizing the reduction concept 

•  Combined and composite constructs 
–  Type less and occasionally new 

semantics 
•  Runtime libraries and environment 

variables 
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An Outline of OpenMP 

•  Parallel Construct and associated 
clauses 
–  Create a team of threads 

•  Data Environment 
–  Controlling how data is shared 

•  Worksharing constructs: 
–  Splitting up work among a team of 

threads 
•  SIMD constructs 
–  Explicit vectorization 

•  Task Constructs 
–  Create and manage explicit tasks 

•  Device Constructs 
–  Offloading work to GPUs, many-core 

CPUs, and other attached devices 
 

•  Synchronization (and the master 
construct) 
–  Add order constraints to your parallel 

program 
•  Cancelation 
–  Ending work in a controlled manner 

•  User Defined Reductions 
–  Generalizing the reduction concept 

•  Combined and composite constructs 
–  Type less and occasionally new 

semantics 
•  Runtime libraries and environment 

variables 

We covered the key points for most of OpenMP but we’ve said little or nothing about four 
topics: SIMD, Devices, Cancelation and User Defined Reductions 
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The Rest of OpenMP 

•  SIMD 

•  Devices 

•  Cancelation 

•  User Defined Reductions 
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Vector SIMD (single instruction, multiple data) 
•  A functional unit typically associated with a CPU core takes a single 

stream of instructions that are applied in parallel to the elements of 
values in special vector registers. 

•  SSE, 128 bits. 2 DP or 4 SP 
•  AVX, 256 bits, 4 DP or 8 SP  (Haswell) 
•  AVX-512, 512 bits, 8 DP or 16 SP (KNL) 

•  Vector instructions usually generated by the compiler “automatically” 
from loops 

•  Best performance may require explicit coding.  

+ 

X 

Y 

X + Y 

+
x3 x2 x1 x0 

y3 y2 y1 y0 

x3+y3 x2+y2 x1+y1 x0+y0 

X 

Y 

X + Y 
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Example Problem:   
Numerical Integration 

∫  4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 X 0.0 
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Serial PI program 

static long num_steps = 8388608; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0/(float) num_steps; 
 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5f)*step; 
    sum = sum + 4.0f/(1.0f+x*x); 
   } 
   pi = step * sum; 

} 

Normally, I’d use double types throughout to minimize roundoff errors especially 
on the accumulation into sum.  But to maximize impact of vectorization for these 
exercise, we’ll use float types.     

Compile as (O3 no-vec), 0.0052 secs 
Compile as (O3 autovec), 0.0023 secs 
 

Note that literals (such as 
4.0, 1.0 and 0.5) are 
explicitly declared as 
floats.  This is very 
important when trying to 
get code to vectorize … 
mixing types can kill 
vectorization. 
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Pi Program: Explicit Vectorization with intriniscs (SSE) 
 float pi_sse(int  num_steps) 
{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4]; 
   step = 1.0/(float) num_steps; 
 
   __m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); 
   __m128 one     = _mm_load1_ps(&scalar_one); 
   __m128 four    = _mm_load1_ps(&scalar_four); 
   __m128 vstep  = _mm_load1_ps(&step); 
   __m128 sum    = _mm_load1_ps(&scalar_zero); 
   __m128 xvec;   __m128 denom;  __m128 eye; 
 
  for (int i=0;i< num_steps; i=i+4){          // unroll loop 4 times 
      ival       = (float)i;                             // and assume num_steps%4 = 0 
      eye       = _mm_load1_ps(&ival); 
      xvec     = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep); 
      denom  = _mm_add_ps(_mm_mul_ps(xvec,xvec),one); 
      sum     = _mm_add_ps(_mm_div_ps(four,denom),sum); 
   } 
   _mm_store_ps(&vsum[0],sum); 
   pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]); 
  return pi; 
} 

O3 (no-vec), 0.0052 secs 
O3 (autovec), 0.0023 secs 
SSE intrinsics, 0.00168 secs 
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Explicit Vectorization PI program 

static long num_steps = 100000; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0/(float) num_steps; 
               #pragma omp for simd reduction(+:sum) 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 
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Explicit Vectorization PI program 

static long num_steps = 100000; 
float step; 
int main () 
{    int i;    float x, pi, sum = 0.0; 
 

   step = 1.0/(float) num_steps; 
               #pragma omp parallel for simd reduction(+:sum) 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 

You can combine with parallel 
for to get threads and SIMD 
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Illustration of combining thread and 
SIMD parallelism 

187 

Figure from “Using OpenMP - the Next 
Step” book by Ruud van de Pas et.al. 



Pi Program: Vector intriniscs plus OpenMP 
 float pi_sse(int  num_steps) 
{  float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4]; 
   float local_sum[NTHREADS];   // set NTHREADS elsewhere, often to num of cores 
   step = 1.0/(float) num_steps;  pi = 0.0; 
  #pragma omp parallel 
  {    int i, ID=omp_get_thread_num(); 
        __m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); 
        __m128 one     = _mm_load1_ps(&scalar_one); 
        __m128 four    = _mm_load1_ps(&scalar_four); 
        __m128 vstep  = _mm_load1_ps(&step); 
        __m128 sum    = _mm_load1_ps(&scalar_zero); 
        __m128 xvec;   __m128 denom;  __m128 eye; 
       #pragma omp for 
       for (int i=0;i< num_steps; i=i+4){            
          ival       = (float)i;                               
          eye       = _mm_load1_ps(&ival); 
          xvec     = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep); 
          denom  = _mm_add_ps(_mm_mul_ps(xvec,xvec),one); 
          sum     = _mm_add_ps(_mm_div_ps(four,denom),sum); 
       } 
      _mm_store_ps(&vsum[0],sum); 
      local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]); 
  } 
   for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k]; 
  return pi; 
} 

To parallelize with OpenMP: 
1.  Promote local_sum to an 

array to there is a variable 
private to each thread but 
available after the parallel 
region 

2.  Add parallel region and 
declare vector registers inside 
the parallel region so each 
thread has their own copy. 

3.  Add workshop loop (for) 
construct 

4.  Add local sums after the 
parallel region to create the 
final value for pi 
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PI program Results: 
4194304 steps    
Times in Seconds (50 runs, min time reported) 

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

Base: lits 
float -no-vec 

Lits float, 
autovrec 

List Float, 
OMP SIMD 

Lits Float, 
OMP SIMD 

Par For 

SSE SSE, OMP 
par for 

run times(sec) 

–  Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5. 
–  Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408 

Float, autovec     0.0023 secs 
Float, OMP SIMD  0.0028 secs 
Float, SSE           0.0016 secs 
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SIMD construct for explicit vectorization 
•  #pragma omp simd [clause[[,] clause], …] 
•  Where common clauses are: 

safelen(length) Max # of concurrent iterations without breaking a 
dependence 

simdlen(length) preferred length of SIMD registers 

linear(list[ : linear-step]) Variables linear relation with iteration number  
(xi = xorig + I * linear-step) 

aligned(list[ : alignment]) list items have given alignment 

•  Plus the usual private, firstprivate, reduction, and collapse. 
•  The SIMD construct Applies to a loop in standard form.   
•  Can be combined with the for construct 
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SIMD example 

void work( float *b, int n, int m )  
{  
    int i;  
    #pragma omp simd safelen(16)  
     for (i = m; i < n; i++)  
             b[i] = b[i-m] - 1.0f;  
}  

•  Explicit control lets you “force” vectorization in cases where 
the system might not otherwise use the vector units. 

As long as the variable 
m is less than or equal 

to 16, this program will 
work correctly 
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Explicit Vectorization – Performance 
Impact 
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ICC auto-vec 

ICC SIMD directive 

Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP 
with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on 
OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312. 

Explicit Vectorization looks better when you move to more complex problems. 
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VASP: SIMD Vectorization 

Leveraging OpenMP parallelization with SIMD 
via  !$omp parallel do simd 

Courtesy	of	Zhengji	Zhao,	NERSC 

SIMD constructs: 
– Loop vectorization via !$omp simd
– Function vectorization via !$omp 

declare simd
– Both could be extended:  

simdlen(x), 
aligned(varlist[:alignment]), 
uniform(varlist) 

– Used schedule(simd:static) or 
schedule(simd:static,x) to match the 
chunk size with the SIMD width 
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The Rest of OpenMP 

•  SIMD 

•  Devices 

•  Cancelation 

•  User Defined Reductions 
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The growth of complexity in OpenMP 
•  OpenMP started out in 1997 as a simple interface for the application 

programmers more versed in their area of science than computer science. 

•  The complexity has grown considerably over the years! 

0 
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200 
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300 

350 

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 

2.5 

2.0 2.0 
1.0 1.0 1.1 

4.5 

4.0 

3.1 
3.0 

Merged C/C++ and Fortran spec 

C/C++ spec 

Fortran spec 

Page counts (not counting front matter, appendices or index) for versions of  OpenMP 

year 

Page counts (spec only) 

The complexity of the full spec is overwhelming, so we focus on the 19 constructs most OpenMP 
programmers restrict themselves to … the so called “OpenMP Common Core” 

Tasks added to OpenMP ... 
supports irregular parallelism 

Target constructs added to OpenMP ... 
supports host-device model 
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The OpenMP device programming model 

#include <omp.h> 
#include <stdio.h> 
int main() 
{ 
    printf(“There are %d devices\n”, 
              omp_get_num_devices()); 
} 

•  OpenMP uses a host/device model 
–  The host is where the initial thread of the program begins execution 
–  Zero or more devices are connected to the host 

Device 

… 
… 

… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 

Host 
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OpenMP with target devices 

1.  Program begins.  Launches Initial thread running 
on the host device. 

2.  Implicit parallel region surrounds entire program 

3.  Initial task begins execution 

4.  Initial thread encounters 
the target directive. 

5.  Initial task generates a 
target task which is a 
mergable, included task 

6.  Target task launches target 
region on the device 

10.   Initial task on host 
continues once 
execution associated 
with the target region 
completes 

7.  A new initial thread runs on the device. 

8.  Implicit parallel region surrounds device program 

9.  Initial task executes code in the target region. 

•  The target construct offloads execution to a device. 
#pragma omp target 
{….}  // a structured block of code 
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The target data environment 

Host thread 

Generating Task 

Initial task 

Target task 

#pragma omp target 
{ 
      target region, can 
use A, B and N 
     
 
} 

Device Initial 
thread 

Host thread 
waits for the 
task region to 

complete 

float A[N], B[N]; A, B and N 
mapped to the 

device 

the arrays  
A and B  

mapped back to 
the host 

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017 

Scalars and statically allocated arrays 
are moved onto the device by default 

before execution 

Only the statically allocated arrays are 
moved back to the host after the target 

region completes 
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How do we execute code on a GPU: 
The SIMT model (Single Instruction Multiple Thread) 

extern void reduce(   __local  float*,   __global float*);           
 
__kernel void pi(  const int niters, float  step_size,     
         __local  float*  l_sums,  __global float*  p_sums)                  
{                                                           
   int n_wrk_items  = get_local_size(0);                  
   int loc_id       = get_local_id(0);      
   int grp_id   = get_group_id(0);              
   float x, accum = 0.0f;    int i,istart,iend;                                       
    
   istart =   (grp_id * n_wrk_items   + loc_id) * niters; 
   iend   = istart+niters;  
 
   for(i= istart; i<iend; i++){  
       x = (i+0.5f)*step_size;    accum += 4.0f/(1.0f+x*x); } 
  
   l_sums[local_id] = accum; 
   barrier(CLK_LOCAL_MEM_FENCE);   
   reduce(l_sums, p_sums);                   
} 

1.  Turn source code into a scalar 
work-item 

2.  Map work-items onto 
an an N dim index 

space.  

4.  Run on hardware 
designed around 
the same SIMT 
execution model 

3.  Map data structures 
onto the same index 

space This is OpenCL kernel code … the sort of 
code the OpenMP compiler generates on 

your behalf 
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A Generic Host/Device Platform Model 

•  One Host and one or more Devices 
–  Each Device is composed of one or more Compute Units 
– Each Compute Unit is divided into one or more Processing 

Elements 
•  Memory divided into host memory and device memory 

Processing 
Element 

Device 

… 
… 

… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 

Host 

Compute Unit 
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Our host/device Platform Model and OpenMP 

Processing 
Element 

Device 

… 
… 

… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 

Host 

Compute Unit 

Target 
construct to get 
onto a device 

Teams construct to create a league of 
teams with one team of threads on 

each compute unit. 
 

Distribute clause to assign  
blocks of loop iterations to teams. 

Parallel for simd to 
run each block of 
loop iterations on 

the processing 
elements 
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Our host/device Platform Model and OpenMP 

Processing 
Element 

Device 

… 
… 

… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 

Host 

Compute Unit 

Target 
construct to get 
onto a device 

Teams construct to create a league of 
teams with one team of threads on 

each compute unit. 
 

Distribute clause to assign  
blocks of loop iterations to teams. 

Parallel for simd to 
run each block of 
loop iterations on 

the processing 
elements 

Typical usage ... let the compiler do what’s best for the device: 

#pragma omp target  
 to get on the device 

#pragma omp teams distribute parallel for simd  
to assign work to the device processing elements 
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Our running example: a Jacobi solver 

•  This program uses a Jacobi iterative method to solve a 
system of linear equations (Ax= b). 

•  Here is the basic idea behind the method.    
– Rewrite the matrix A as a Lower Triangular (L), upper triangular (U) 

and diagonal matrix (D):  

                Ax = (L + D + U)x = b 
– Carry out the multiplication and rearrange: 

                Dx = b - (L+U)x  -->   x = (b-(L+U)x)/D 
– Continue in an iterative manner until the error is small enough 

                x_new = (b-(L+U)x_old)/D 
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Jacobi Solver (serial) 

<<< allocate and initialize the matrix A and >>> 
<<< vectors x1, x2 and b                             >>>  
while((conv > TOL) && (iters<MAX_ITERS)) 
   { 
     iters++; 
     xnew = iters % s ? x2 : x1; 
     xold   = iters % s ? x1 : x2; 
 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
   

     // 
     // test convergence 
     // 
     conv = 0.0; 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} // end while loop 
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Jacobi Solver (Par Targ, 1/2) 
 while((conv > TOL) && (iters<MAX_ITERS)) 
   { 
     iters++; 
     xnew = iters % 2 ? x2 : x1; 
     xold   = iters % 2 ? x1 : x2; 
 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
       #pragma omp teams distribute parallel for simd private(i,j) 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
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Jacobi Solver (Par Targ, 2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp teams distribute parallel for simd  \ 
                                private(i,tmp) reduction(+:conv) 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} \\ end while loop 
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Jacobi Solver (Par Targ, 2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp teams distribute parallel for simd  \ 
                                private(i,tmp) reduction(+:conv) 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} \\ end while loop 

This worked but the performance was awful.  
Why? 

System Implementation Ndim = 4096 
NVIDA® 
K20X™ 
GPU 

Target dir per 
loop 

131.94 secs 

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.  
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3.  NVIDIA® Tesla® K20X, 6GB. 
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Data movement dominates!!! 
while((conv > TOLERANCE) && (iters<MAX_ITERS)) 
   { iters++; 
     xnew = iters % s ? x2 : x1; 
     xold   = iters % s ? x1 : x2; 
 
     #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
       #pragma omp teams distribute parallel for simd private(i,j) 
       for (i=0; i<Ndim; i++){ 
           xnew[i] = (TYPE) 0.0; 
           for (j=0; j<Ndim;j++){ 
               if(i!=j) 
                 xnew[i]+= A[i*Ndim + j]*xold[j]; 
           } 
           xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
       } 
// test convergence 
     conv = 0.0; 
     #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp teams distribute parallel for private(i,tmp) reduction(+:conv) 
        for (i=0; i<Ndim; i++){ 
            tmp  = xnew[i]-xold[i]; 
            conv += tmp*tmp; 
        } 
     conv = sqrt((double)conv); 
   } 

Typically over 4000 iterations! 

For each iteration, copy to device 
(3*Ndim+Ndim2)*sizeof(TYPE) bytes 

For each iteration, copy from device 
2*Ndim*sizeof(TYPE) bytes  

For each iteration, copy  to 
device 2*Ndim*sizeof(TYPE) 
bytes  
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Target data directive 
•  The target data construct creates a target data region. 
•  You use the map clauses for explicit data management  

#pragma omp target data map(to: A,B) map(from: C) 
{….}  // a structured block of code 

•  Data copied into the device data environment at the beginning 
of the directive and at the end 

•  Inside the target data region, multiple target regions can 
work with the single data region 

#pragma omp target data map(to: A,B) map(from: C) 
{ 
     #pragma omp target 
           {do lots of stuff with A, B and C} 
     {do something on the host} 
     #pragma omp target 
           {do lots of stuff with A, B, and C} 
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Target update directive 
•  You can update data between target regions with the target 

update directive.  
#pragma omp target data map(to: A,B) map(from: C) 
{ 
     #pragma omp target 
           {do lots of stuff with A, B and C} 
 
     #pragma omp update from(A) 
 
     host_do_something_with(A) 
 
     #pragma omp update to(A) 
 
     #pragma omp target 
           {do lots of stuff with A, B, and C} 
} 

Copy A on the 
device to A on the 
host.  

Copy A on the host 
to A on the device.  
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Target update details 
•  #pragma omp target update clause[[[,]clause]...]new-line  
•  creates a target task to handle data movement between the 

host and a device 

•  clause is either motion-clause or one of the following:  
–  if(scalar-expression)  
– device(integer-expression) 
– nowait 
– depend (dependence-type : list) 

•  the motion-clause is one of the following:  
–  to(list)  
–  from(list)  

•  This directive generates a target task.   
•  nowait and depend apply to the target task running on the 

host. 

211 



Jacobi Solver (Par Targ Data, 1/2) 
  #pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
while((conv > TOL) && (iters<MAX_ITERS)) 
   {  iters++; 
      // alternate x vectors. 
     xnew  = iters % 2 ? x2 : x1; 
     xold   =  iters % 2 ? x1 : x2; 
 
#pragma omp target   
       #pragma omp teams distribute parallel for simd private(j) 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
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Jacobi Solver (Par Targ Data, 2/2) 

     // 
     // test convergence 
     // 
 conv = 0.0; 
#pragma omp target map(tofrom: conv) 
{ 
#pragma omp teams distribute parallel for simd  \ 
                                private(tmp) reduction(+:conv)      
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
} // end target region 
 conv = sqrt((double)conv); 
} // end while loop 

System Implementation Ndim = 4096 
NVIDA® 
K20X™ 
GPU 

Target dir per loop 131.94 secs 
Above plus target 
data region 

18.37 secs 
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The Rest of OpenMP 

•  SIMD 

•  Devices 

•  Cancelation 

•  User Defined Reductions 
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Cancellation 

#pragma omp parallel 
{  
    for(int i=0; i<N; i++){ 
 
        res=do_some_work(); 
  
        if ( res == DONE ){ 
            #pragma omp cancel parallel 
        } 
 
        do_more_work(); 
  
        #pragma omp cancelation point 
    } 
} 

The thread that encounters 
this pragma signals 

cancellation and ends 
execution of parallel region 

Threads check for 
cancellation signal and end 

their execution of the 
parallel region  

•  Sometimes you want an OpenMP construct to shut down gracefully  
–  Error condition that prevent threads from continuing 
–  The work is done. 

•  Cancellation: parallel, taskgroup, sections and worksharing loops 
•  OMP_CANCELLATION environment variable must be set to true to enable 

cancelation. 
215 



The Rest of OpenMP 

•  SIMD 

•  Devices 

•  Cancelation 

•  User Defined Reductions 
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User Defined Reductions 
•  What if you need a reduction in OpenMP, but the standard built in 

reductions do not cover your needs? 
•  OpenMP added a capability for user defined reductions. 
•  The declare reduction directive 

#pragma omp declare reduction (reduction_identifier : typename :  \  
            combiner) [initializer-clause] 

name Description 
Reduction_identifier A C/C++ identifier.  May be one of the existing, predefined reduction 

operators 

typename The name of a type or list of types if the reduction applies at different 
instances to different types   

combiner A function or expression for pairwise combination of results from threads 
using variables:  
omp_orig:  value of ”original variable” from scope prior to the reduction 
omp_priv: value used to initialize private, reduction variables 
omp_in, omp_out: variables from each thread with result in omp_out 

Initializer-clause 2 forms: omp_priv = initializer or  
              omp_priv = function(argument_list) 
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UDR Example 
#define N        128 
int main() 
{ 
   int *a; 
   int result = INT_MAX; 
   // create and initialize the array a 
  
   // declare the user defined reduction 
   #pragma omp declare reduction (my_abs_min : int :   \ 
        omp_out = abs(omp_in) < omp_out ? abs(omp_in) : abs (omp_out)) \ 
        initializer (omp_priv = INT_MAX) 
 
   #pragma omp parallel for reduction(my_abs_min:result) 
   for (int i=0; i<N; i++){ 
      if (abs(a[i] < result)) 
          result = abs(a[i]); 
   } 
   printf("result = %d \n",result); 
} 
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Conclusion  

•  That’s it … you’ve now gone beyond the common core. 
•  At this point, you should be able to grab some OpenMP 

books and a copy of the specification, and run with OpenMP 
on your own 
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OpenMP organizations 

• OpenMP architecture review  board URL, the 
“owner” of the OpenMP specification: 

www.openmp.org   
• OpenMP User’s Group (cOMPunity) URL: 

www.compunity.org 

Get involved, join the ARB and cOMPunity 
and help define the future of OpenMP 
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   http://www.openmp.org 
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Books about OpenMP 

•  A book about OpenMP by a 
team of authors at the forefront 
of OpenMP’s evolution. 

l  A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java 
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Resources: 

A great new book that 
covers OpenMP 
features beyond 

OpenMP 2.5 
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Background references  

A great book that  explores key 
patterns with Cilk, TBB, OpenCL, 
and OpenMP (by McCool, Robison, 
and Reinders) 

An excellent introduction and 
overview of multithreaded 
programming in general (by Clay 
Breshears)  224 



Extra content 

•  Additional examples 
– Divide and conquer: recursive matrix multiplication 
– Task Dependencies: 1D Stencil 
– Flow Graph Analyzer and task dependencies 

•  Notes on Parallel random number generation 
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Recursive matrix multiplication 

•  Quarter each input matrix and output matrix 
•  Treat each submatrix as a single element and multiply 
•  8 submatrix multiplications, 4 additions 

A B C 

A1,1 A1,2 

A2,1 A2,2 

B1,1 B1,2 

B2,1 B2,2 

C1,1 C1,2 

C2,1 C2,2 

C1,1 = A1,1·B1,1 + A1,2·B2,1 

C2,1 = A2,1·B1,1 + A2,2·B2,1 

C1,2 = A1,1·B1,2 + A1,2·B2,2 

C2,2 = A2,1·B1,2 + A2,2·B2,2 
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Recursive matrix multiplication 
 How to multiply submatrices? 

•  Use the same routine that is computing the full matrix 
multiplication 
– Quarter each input submatrix and output submatrix 
– Treat each sub-submatrix as a single element and multiply 

A B C 

A1,1 A1,2 

A2,1 A2,2 

B1,1 B1,2 

B2,1 B2,2 

C1,1 C1,2 

C2,1 C2,2 

C111,1 = A111,1·B111,1 + A111,2·B112,1 +  
             A121,1·B211,1 + A121,2·B212,1 

C1,1 = A1,1·B1,1 + A1,2·B2,1 

A1,1 

A111,1 A111,2 

A112,1 A112,2 

B1,1 

B111,1 B111,2 

B112,1 B112,2 

C1,1 

C111,1 C111,2 

C112,1 C112,2 
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C1,1 = A1,1·B1,1 + A1,2·B2,1 

C2,1 = A2,1·B1,1 + A2,2·B2,1 

C1,2 = A1,1·B1,2 + A1,2·B2,2 

C2,2 = A2,1·B1,2 + A2,2·B2,2 

Recursive matrix multiplication 
  Recursively multiply submatrices 

•  Also need stopping criteria for recursion 

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,  

                double **A, double **B, double **C) 

{// Dimensions: A[mf..ml][pf..pl]  B[pf..pl][nf..nl]  C[mf..ml][nf..nl] 

   

// C11 += A11*B11 

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);   

// C11 += A12*B21 

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);   

   . . .  

} 

l  Need range of indices to define each submatrix to be used 

228 



#define THRESHOLD 32768   // product size below which simple matmult code is called 
 
void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,  
                double **A, double **B, double **C) 
    
// Dimensions: A[mf..ml][pf..pl]    B[pf..pl][nf..nl]   C[mf..ml][nf..nl] 
   
{   
   if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)    
      matmult (mf, ml, nf, nl, pf, pl, A, B, C);    
   else   
   {  
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{   
      matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C11 += A11*B11 
      matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C11 += A12*B21 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
      matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C12 += A11*B12 
      matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C12 += A12*B22 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
     matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);  // C21 += A21*B11 
     matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);  // C21 += A22*B21 
} 
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl) 
{ 
     matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C);  // C22 += A21*B12 
     matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C);  // C22 += A22*B22 
} 
#pragma omp taskwait 
 
   }    
}    

Recursive matrix multiplication 
•  Could be executed in parallel as 4 tasks 
–  Each task executes the two calls for the same output submatrix of C 

•  However, the same number of multiplication operations needed 
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Extra content 

•  Additional examples 
– Divide and conquer: recursive matrix multiplication 
– Task Dependencies: 1D Stencil 
– Flow Graph Analyzer and task dependencies 

•  Notes on Parallel random number generation 
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1D Stencil Example 

The heat equation: 
 
 
double k = 0.5; // heat transfer coefficient 
double dt = 1.; // time step 
double dx = 1.; // grid spacing 
 
double heat(double left, double mid, double right) 
{ 
    return mid+(k*dt/dx*dx)*(left-2*mid+right); 
} 
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1D Stencil Example 

Application of the heat equation to a 1D array 

void heat_part( int size, double* next,  
                double* left,  
                double *mid, double *right) 
{ 
    next[0] = heat(left[size-1], mid[0], mid[1]); 
 
    for (int i = 1; i < size-1; ++i) 
      next[i] = heat(mid[i-1], mid[i], mid[i+1]); 
 
      next[size-1] = heat(mid[size-2], mid[size-1], 
                        right[0]); 
} 
 

232 



1D Stencil Example 

Dividing the work into partitions of the array 

for (int i = 0; i < np; ++i) { 
    heat_part( nx, &next[i*nx],  
               &current[idx(i-1, np)*nx],  
               &current[i*nx],  
               &current[idx(i+1, np)*nx]); 
} 
 
//idx does the wrapping here 
int idx(int i, int size) 
{ 
    return (i < 0) ? (i + size) % size : i % size; 
} 
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1D Stencil Example 

Reads and writes need to be done on separate arrays 

U[0] = malloc(np*nx * sizeof(double)); 
U[1] = malloc(np*nx * sizeof(double)); 
 
double* current = U[0]; 
double* next    = U[1]; 
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1D Stencil Example 

Each iteration alternates between arrays 

for(int t = 0; t < nt; t++) { 
    for (int i = 0; i < np; ++i) { 
        heat_part( nx, &next[i*nx],  
                   &current[idx(i-1, np)*nx], 
                   &current[i*nx],  
                   &current[idx(i+1, np)*nx]); 
    } 
    current = U[(t+1) % 2]; 
    next    = U[ t    % 2]; 
} 
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1D Stencil Example 

Because of the partitioning, one task directive is needed 

for(int t = 0; t < nt; t++) { 
    for (int i = 0; i < np; ++i) { 
#pragma omp task depend(out: next[i*nx]) \ 
            depend(in: current[idx(i-1, np)*nx],\ 
            current[i*nx], current[idx(i+1, np)*nx]) 
        heat_part( nx, &next[i*nx],  
                   &current[idx(i-1, np)*nx], 
                   &current[i*nx],  
                   &current[idx(i+1, np)*nx]); 
    } 
    current = U[(t+1) % 2]; 
    next    = U[ t    % 2]; 
} 
#pragma omp taskwait 
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Extra content 

•  Additional examples 
– Divide and conquer: recursive matrix multiplication 
– Task Dependencies: 1D Stencil 
– Flow Graph Analyzer and task dependencies 

•  Notes on Parallel random number generation 
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OMPT and Flow Graph 
Analyzer: Visualization 

and Analysis of OpenMP 
Task Dependencies 

Vishakha Agrawal 
Intel Corp 

May 2 2018 



AGENDA 
 
 •  Introduction to Flow Graph Analyzer 
•  Original code showing OpenMP inner loop  
•  FGA screenshot where you can see additional 

dependency  
•  New code with perf fix 
•  Chart/graph showing performance gain. 
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Flow Graph Analyzer (FGA) :  
Released as Tech. Preview in Intel Parallel Studio for TBB 
 
 
•  A visualization tool that supports the analysis and design of parallel applications that use 

computational graphs 

A Proof of Concept system for OpenMP tasks 
with depend clauses 240 



Original code showing OpenMP inner loop  
 

•  There are two performance improvement opportunities: 
1.  Between each iteration there is a node that uses depend to create a barrier 
2.  There are depend items that can be removed due to transitivity 
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The dependence graph displayed in FGA 
Optimization 1: the barrier node 

Note;  All tasks pass through this one choke point …. Basically meaning we are 
using  depend clauses to create the equivalent of a taskwait 
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The dependence graph displayed in FGA 
Optimization 1: the barrier node 

Note;  All tasks pass through this one choke point …. Basically meaning we are 
using  depend clauses to create the equivalent of a taskwait 
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The dependence graph displayed in FGA 
Optimization 2: removal of transitive dependences 
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Transitive OpenMP Dependences in FGA 

•  a <x b means a must execute before b due to a dependence on location x 
•  As shown in the left figure, FGA does NOT display a <x d since a <x b and b <x d  
•  But in the right figure, there is no transitive dependence due to y, so FGA does show a <y d 
•  However, the ordering is enforced due to the x dependence, and therefore it is legal to 

remove y from depend clause for d in the source code to reduce book-keeping 
•  Whether this is good idea or not (maintainability or readability) is left to developers 

#pragma omp task depend(out: x) 
    a(&x) 
#pragma omp task depend(inout: x) 
    b(&x); 
#pragma omp task depend(in: x) 
    c(x) 
#pragma omp task depend(in: x) 
    d(x) 

d

a b

c

a <x b b <x c 

b <x d 

a <x c 

a <x d 

#pragma omp task depend(out: x, y) 
    a(&x, &y) 
#pragma omp task depend(inout: x) 
    b(&x); 
#pragma omp task depend(in: x) 
    c(x) 
#pragma omp task depend(in: x, y) 
    d(x, y) 

d

a b

c

a <x b b <x c 

b <x d 

a <x c 

a <y d 

a <x d 

Displayed in FGA 
Not displayed in FGA 
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Modified code with both optimizations: 
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Performance Charts: 
 
 

There is roughly a constant 100 MFLOPS improvement 

Configuration Info:  
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz 
Compiler Intel 18.0, Arch:  intel64 
KMP_HW_SUBSET=1S,18C,1T 
KMP_AFFINITY=granularity=fine,compact 
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Legal Disclaimer & Optimization Notice 

Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations 
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.  
Notice revision #20110804 
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•  The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and 
workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily 
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations. 

•  Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products.  For more complete information visit www.intel.com/benchmarks.   

•  INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY 
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 

•  Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation 
in the U.S. and other countries. 
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Extra content 

•  Additional examples 
– Divide and conquer: recursive matrix multiplication 
– Task Dependencies: 1D Stencil 
– Flow Graph Analyzer and task dependencies 

•  Notes on Parallel random number generation 
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Computers and random numbers 
•  We use “dice” to make random numbers:  
– Given previous values, you cannot predict the next value. 
– There are no patterns in the series … and it goes on forever. 

•  Computers are deterministic machines … set an initial state, 
run a sequence of predefined instructions, and you get a 
deterministic answer 
– By design, computers are not random and cannot produce random 

numbers. 
•  However, with some very clever programming, we can make 

“pseudo random” numbers that are as random as you need 
them to be … but only if you are very careful. 

•  Why do I care?  Random numbers drive statistical methods 
used in countless applications: 
– Sample a large space of alternatives to find statistically good answers 

(Monte Carlo methods).  
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Monte Carlo Calculations  
Using Random numbers to solve tough problems 

•  Sample a problem domain to estimate areas, compute probabilities, 
find optimal values, etc. 

•  Example: Computing π with a digital dart board: 

l  Throw darts at the circle/square. 
l  Chance of falling in circle is 

proportional to ratio of areas: 
Ac = r2 * π 
As = (2*r) * (2*r)  = 4 * r2 

P = Ac/As =  π /4 
l  Compute π by randomly 

choosing points, count the 
fraction that falls in the circle, 
compute pi.   

2 * r 

N= 10       π = 2.8 

N=100       π = 3.16 

N= 1000    π = 3.148 
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Parallel Programmers love Monte Carlo 
algorithms 

#include “omp.h” 
static long num_trials = 10000; 
int main () 
{ 
   long i;      long Ncirc = 0;       double pi, x, y; 
   double r = 1.0;   // radius of circle. Side of squrare is 2*r  
   seed(0,-r, r);  // The circle and square are centered at the origin 
   #pragma omp parallel for private (x, y) reduction (+:Ncirc) 
   for(i=0;i<num_trials; i++) 
   { 
      x = random();         y = random(); 
      if ( x*x + y*y) <= r*r)   Ncirc++; 
    } 
 
    pi = 4.0 * ((double)Ncirc/(double)num_trials); 
    printf("\n %d trials, pi is %f \n",num_trials, pi); 
} 

Embarrassingly parallel: the 
parallelism is so easy its 
embarrassing. 

Add two lines and you have a 
parallel program. 
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Linear Congruential Generator (LCG) 
•  LCG: Easy to write, cheap to compute, portable, OK quality 

l  If you pick the multiplier and addend correctly, LCG has a period of 
PMOD. 

l  Picking good LCG parameters is complicated, so look it up 
(Numerical Recipes is a good source).  I used the following: 

u MULTIPLIER = 1366 
u ADDEND = 150889 
u PMOD = 714025 

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
random_last = random_next; 
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LCG code 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

Seed the pseudo random 
sequence by setting 
random_last 
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Running the PI_MC program with LCG generator 

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10  R
elative error 

Log10 number of samples 

Run the same 
program the 
same way and 
get different 
answers!   

That is not 
acceptable! 

Issue: my LCG 
generator is not 
threadsafe 

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel 
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP. 255 



LCG code: threadsafe version 

static long MULTIPLIER  = 1366; 
static long ADDEND      = 150889; 
static long PMOD        = 714025; 
long random_last = 0; 
#pragma omp threadprivate(random_last) 
double random () 
{ 
    long random_next;  
 
    random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD; 
    random_last = random_next; 
 
   return  ((double)random_next/(double)PMOD); 
} 

random_last carries state 
between random number 
computations, 

To make the generator 
threadsafe, make 
random_last threadprivate 
so each thread has its own 
copy. 
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Thread safe random number generators 

Log
10  R

elative error 

Log10 number of samples Thread safe 
version gives the 
same answer each 
time you run the 
program. 

But for large 
number of 
samples, its quality 
is lower than the 
one thread result! 

Why? 

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe
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Pseudo Random Sequences 
•  Random number Generators (RNGs) define a sequence of pseudo-random 

numbers of length equal to the period of the RNG 

l  In a typical problem, you grab a subsequence of the RNG range 

Seed determines starting point 

l  Grab arbitrary seeds and you may generate overlapping sequences   
u  E.g. three sequences … last one wraps at the end of the RNG period. 

l  Overlapping sequences = over-sampling and bad statistics … lower quality or 
even wrong answers! 

Thread 1 
Thread 2 

Thread 3 
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Parallel random number generators 
•  Multiple threads cooperate to generate and use random 

numbers. 
•  Solutions: 
– Replicate and Pray 
– Give each thread a separate, independent generator 
– Have one thread generate all the numbers. 
– Leapfrog … deal out sequence values “round robin” 

as if dealing a deck of cards. 
– Block method … pick your seed so each threads gets 

a distinct contiguous block. 
•  Other than “replicate and pray”, these are difficult to 

implement.  Be smart … buy a math library that does it 
right. 

If done right, can 
generate the 
same sequence 
regardless of the 
number of threads 
… 

Nice for 
debugging, but 
not really needed 
scientifically. 

Intel’s Math kernel Library supports all of these 
methods. 
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MKL Random number generators (RNG) 

#define BLOCK 100 
double  buff[BLOCK];  
VSLStreamStatePtr stream; 
 
vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);  
 
vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,    

                      BLOCK, buff, low, hi) 
 
vslDeleteStream( &stream ); 

l  MKL includes several families of RNGs in its vector statistics library. 
l  Specialized to efficiently generate vectors of random numbers 

Initialize a 
stream or 
pseudo 
random 
numbers 

Select type of RNG 
and set seed 

Fill buff with BLOCK pseudo rand.  
nums, uniformly distributed with values 
between lo and hi. 

Delete the stream when you are done 
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Wichmann-Hill generators (WH) 

•  WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG. 

•  Easy to use, just make each stream threadprivate and initiate RNG 
stream so each thread gets a unique WG RNG.  

VSLStreamStatePtr stream;  

#pragma omp threadprivate(stream) 

                                        … 

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed); 
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Independent Generator for each thread 

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10  R

elative error 

Log10 number of samples 
Notice that once 
you get beyond 
the high error, 
small sample 
count range, 
adding threads 
doesn’t 
decrease quality 
of random 
sampling. 
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      #pragma omp single 
      {   nthreads = omp_get_num_threads(); 
           iseed = PMOD/MULTIPLIER;     // just pick a seed 
           pseed[0] = iseed; 
           mult_n = MULTIPLIER; 
           for (i = 1; i < nthreads; ++i) 
          { 

 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD); 
 pseed[i] = iseed; 
 mult_n = (mult_n * MULTIPLIER) % PMOD; 

          } 
 
       } 
       random_last = (unsigned long long) pseed[id]; 

Leap Frog method 
•  Interleave samples in the sequence of pseudo random numbers: 
– Thread i starts at the ith number in the sequence 
– Stride through sequence, stride length = number of threads. 

•  Result … the same sequence of values regardless of the number of 
threads. 

One thread 
computes offsets 
and strided 
multiplier 

LCG with Addend = 0 just 
to keep things simple  

Each thread stores offset starting 
point into its threadprivate “last 
random” value 
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Same sequence with many threads. 

•  We can use the leapfrog method to generate the same 
answer for any number of threads 

Steps One thread 2 threads 4 threads 

1000 3.156 3.156 3.156 

10000 3.1168 3.1168 3.1168 

100000 3.13964 3.13964 3.13964 

1000000 3.140348 3.140348 3.140348 

10000000 3.141658 3.141658 3.141658 

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for 
the y values (WH+1).  Also used the leapfrog method to deal out iterations among threads. 
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